192 research outputs found

    Comparison of vertical cup-to-disc ratio estimates using stereoscopic and monoscopic cameras

    Get PDF
    Background: The use of monoscopic cameras for glaucoma screening is increasing due to their portability, lower cost, and non-mydriatic capabilities. However, it is important to compare the accuracy of such devices with stereoscopic cameras that are used clinically and are considered the gold standard in optic disc assessment. The aim of this study is to compare vertical cup-to-disc ratio (VCDR) estimates obtained using images taken with a monoscopic and stereoscopic camera. Methods: Participants were selected from the Tema Eye Survey. Eligible subjects had images of at least one eye taken with two cameras. They were classified as meeting the glaucoma threshold if an eye had a VCDR estimate >97.5th percentile, corresponding to >0.725 for this population. Hence, we used 0.725 as the cutoff to group eyes into two categories: positive and negative. We calculated sensitivity, specificity, and predictive values of VCDR assessed by expert readers at a reading center for monoscopic photos using stereoscopic photos as the gold standard. Results: Three hundred and seventy-nine eyes of 206 participants were included in the study. Most participants were female (60.2%) and the most common age group was 50–59 years (36.4%). Sixteen eyes met the glaucoma threshold (VCDR > 0.725). Of these, the VCDR estimates of 14 eyes (87.5%) disagreed on the glaucoma threshold from the two cameras. The sensitivity to detect glaucoma with the monoscopic camera was 14.3% (95% CI: 4.0, 40.3). Conclusions: The low sensitivity of monoscopic photos suggests that stereoscopic photos are more useful in the diagnosis of glaucoma

    Integration and fusion of standard automated perimetry and optical coherence tomography data for improved automated glaucoma diagnostics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The performance of glaucoma diagnostic systems could be conceivably improved by the integration of functional and structural test measurements that provide relevant and complementary information for reaching a diagnosis. The purpose of this study was to investigate the performance of data fusion methods and techniques for simple combination of Standard Automated Perimetry (SAP) and Optical Coherence Tomography (OCT) data for the diagnosis of glaucoma using Artificial Neural Networks (ANNs).</p> <p>Methods</p> <p>Humphrey 24-2 SITA standard SAP and StratusOCT tests were prospectively collected from a randomly selected population of 125 healthy persons and 135 patients with glaucomatous optic nerve heads and used as input for the ANNs. We tested commercially available standard parameters as well as novel ones (fused OCT and SAP data) that exploit the spatial relationship between visual field areas and sectors of the OCT peripapillary scan circle. We evaluated the performance of these SAP and OCT derived parameters both separately and in combination.</p> <p>Results</p> <p>The diagnostic accuracy from a combination of fused SAP and OCT data (95.39%) was higher than that of the best conventional parameters of either instrument, i.e. SAP Glaucoma Hemifield Test (p < 0.001) and OCT Retinal Nerve Fiber Layer Thickness ≥ 1 quadrant (p = 0.031). Fused OCT and combined fused OCT and SAP data provided similar Area under the Receiver Operating Characteristic Curve (AROC) values of 0.978 that were significantly larger (p = 0.047) compared to ANNs using SAP parameters alone (AROC = 0.945). On the other hand, ANNs based on the OCT parameters (AROC = 0.970) did not perform significantly worse than the ANNs based on the fused or combined forms of input data. The use of fused input increased the number of tests that were correctly classified by both SAP and OCT based ANNs.</p> <p>Conclusions</p> <p>Compared to the use of SAP parameters, input from the combination of fused OCT and SAP parameters, and from fused OCT data, significantly increased the performance of ANNs. Integrating parameters by including a priori relevant information through data fusion may improve ANN classification accuracy compared to currently available methods.</p

    Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma

    Get PDF
    To estimate the floor of retinal nerve fibre layer (RNFL) thickness measurements and the corresponding retinal sensitivity loss in glaucoma

    Stereo Photo Measured ONH Shape Predicts Development of POAG in Subjects With Ocular Hypertension

    Get PDF
    To identify objective, quantitative optic nerve head (ONH) structural features and model the contributions of glaucoma

    Residual and Dynamic Range of Retinal Nerve Fiber Layer Thickness in Glaucoma: Comparison of Three OCT Platforms

    Get PDF
    To estimate visual field (VF) sensitivity at which retinal nerve fiber layer (RNFL) thinning reaches the measurement floor and at which RNFL stops thinning (change points), the dynamic range of RNFL thickness, and the number of steps from normal to RNFL floor among three optical coherence tomography (OCT) devices

    Specification of progression in glaucomatous visual field loss, applying locally condensed stimulus arrangements

    Get PDF
    The goal of this work was to (i) determine patterns of progression in glaucomatous visual field loss, (ii) compare the detection rate of progression between locally condensed stimulus arrangements and conventional 6° × 6° grid, and (iii) assess the individual frequency distribution of test locations exhibiting a local event (i.e., an abrupt local deterioration of differential luminance sensitivity (DLS) by more than -10dB between any two examinations). The visual function of 41 glaucomatous eyes of 41 patients (16 females, 25 males, 37 to 75 years old) was examined with automated static perimetry (Tuebingen Computer Campimeter or Octopus 101-Perimeter). Stimuli were added to locally enhance the spatial resolution in suspicious regions of the visual field. The minimum follow-up was four subsequent sessions with a minimum of 2-month (median 6-month) intervals between each session. Progression was identified using a modified pointwise linear regression (PLR) method and a modified Katz criterion. The presence of events was assessed in all progressive visual fields. Eleven eyes (27%) showed progression over the study period (median 2.5 years, range 1.3–8.6 years). Six (55%) of these had combined progression in depth and size and five eyes (45%) progressed in depth only. Progression in size conformed always to the nerve fiber course. Seven out of 11 (64%) of the progressive scotomata detected by spatially condensed grids would have been missed by the conventional 6° × 6° grid. At least one event occurred in 64% of all progressive eyes. Five of 11 (46%) progressive eyes showed a cluster of events. The most common pattern of progression in glaucomatous visual fields is combined progression in depth and size of an existing scotoma. Applying individually condensed test grids remarkably enhances the detection rate of glaucomatous visual field deterioration (at the expense of an increased examination time) compared to conventional stimulus arrangements

    Chitosan Modification of Adenovirus to Modify Transfection Efficiency in Bovine Corneal Epithelial Cells

    Get PDF
    BACKGROUND: The purpose of this study is to modulate the transfection efficiency of adenovirus (Ad) on the cornea by the covalent attachment of chitosan on adenoviral capsids via a thioether linkage between chitosan modified with 2-iminothiolane and Ad cross-linked with N-[gamma-maleimidobutyryloxy]succinimide ester (GMBS). METHODOLOGY/PRINCIPAL FINDINGS: Modified Ad was obtained by reaction with the heterobifunctional crosslinking reagent, GMBS, producing maleimide-modified Ad (Ad-GMBS). Then, the chitosan-SH was conjugated to Ad-GMBS via a thioether bond at different ratios of Ad to GMBS to chitosan-SH. The sizes and zeta potentials of unmodified Ad and chitosan-modified Ads were measured, and the morphologies of the virus particles were observed under transmission electron microscope. Primary cultures of bovine corneal epithelial cells were transfected with Ads and chitosan-modified Ads in the absence or presence of anti-adenovirus antibodies. Chitosan modification did not significantly change the particle size of Ad, but the surface charge of Ad increased significantly from -24.3 mV to nearly neutral. Furthermore, primary cultures of bovine corneal epithelial cells were transfected with Ad or chitosan-modified Ad in the absence or presence of anti-Ad antibodies. The transfection efficiency was attenuated gradually with increasing amounts of GMBS. However, incorporation of chitosan partly restored transfection activity and rendered the modified antibody resistant to antibody neutralization. CONCLUSIONS/SIGNIFICANCE: Chitosan can provide a platform for chemical modification of Ad, which offers potential for further in vivo applications
    corecore