16 research outputs found

    Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    Get PDF
    BACKGROUND: Multidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170), thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. METHODS: In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn), were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. RESULTS: Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin) decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. CONCLUSION: These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents

    Synthesis of (+/-)epipentenomycin I and III

    Get PDF
    A synthesis of (±) epipentenomycin I and III is reported from a regioselective epoxidation of racemic 3-hydroxy- and 3-acetoxy-2-methylene-4-cyclopentenone, respectively, with dimethyldioxirane followed by hydrolytic ring-opening of the resulting epoxide

    Synthesis of spiro [4.5] decane sesquiterpenes

    No full text
    Imperial Users onl

    Dechlorophyllation by Electrocoagulation

    No full text
    Electrocoagulation was used for dechlorophyllation of alcoholic extracts from five plants. The results showed that for every plant extract studied, electrocoagulation was more efficient than the classical solvent extraction method in removing plant pigments, while not affecting the important secondary metabolites in those extracts

    Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    No full text
    Abstract Background Multidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170), thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. Methods In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn), were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Results Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin) decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. Conclusion These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents.</p

    Facile Microwave-assisted Synthesis of 9,10-Dihydro-9,10ethanoanthracene-11-carboxylic

    No full text
    Abstract: A facile, high yielding synthesis of 9,10-dihydro-9,10-ethano- anthracene-11carboxylic acid methyl ester using a modified commercial domestic microwave oven is reported

    Microwave-assisted facile synthesis and crystal structure of cis-9,10,11,15-tetrahydro-9,10[3\u274\u27]-furanoanthracene-12,14-dione

    Get PDF
    A facile synthesis and crystal structure of cis‐9,10,11,15‐tetrahydro‐9,10[3′,4′]‐furanoanthracene‐12,14‐dione from the reaction of anthracene and maleic anhydride in xylene in a short time and high yield using a modified commercial domestic microwave oven is reported

    Electrocoagulation of Quinone Pigments

    No full text
    Some representative quinones, viz. one naphthoquinone (plumbagin) and five anthraquinones (alizarin, purpurin, chrysazin, emodin, and anthrarufin), were subjected to electrocoagulation. It was found that the rate and extent of coagulation of these compounds appears to correlate with the number and relative position of their phenolic substituent groups, and that all of the coagulated quinones could be recovered. Attempts were then made to electrochemically isolate three quinones, namely plumbagin, morindone and erythrolaccin, from natural sources

    Electrocoagulation in aqueous alcoholic solutions

    No full text
    Electrochemistry is the branch of chemistry that deals with the chemical action of electricity and the production of electricity by chemical reactions. In a world short of energy sources yet long on energy use, electrochemistry is a critical component of the mix necessary to keep the world economies growing. Electrochemistry is involved with such important applications as batteries, fuel cells, corrosion studies, hydrogen energy conversion, bioelectricity. Research on electrolytes, cells, and electrodes is within the scope of this old but extremely dynamic field. This new book gathers new and important research from around the globe
    corecore