379 research outputs found
Genome-wide survival analysis of age at onset of alcohol dependence in extended high-risk COGA families.
BackgroundThe age at onset of alcohol dependence (AD) is a critical moderator of genetic associations for alcohol dependence. The present study evaluated whether single nucleotide polymorphisms (SNPs) can influence the age at onset of AD in large high-risk families from the Collaborative Study on the Genetics of Alcoholism (COGA).MethodsGenomewide SNP genotyping was performed in 1788 regular drinkers from 118 large European American families densely affected with alcoholism. We used a genome-wide Cox proportional hazards regression model to test for association between age at onset of AD and SNPs.ResultsThis family-based analysis identified an intergenic SNP, rs2168784 on chromosome 3 that showed strong evidence of association (P=5×10(-9)) with age at onset of AD among regular drinkers. Carriers of the minor allele of rs2168784 had 1.5 times the hazard of AD onset as compared with those homozygous for the major allele. By the age of 20 years, nearly 30% of subjects homozygous for the minor allele were alcohol dependent while only 19% of those homozygous for the major allele were. We also identified intronic SNPs in the ADP-ribosylation factor like 15 (ARL15) gene on chromosome 5 (P=1.11×10(-8)) and the UTP20 small subunit (UTP20) gene on chromosome 12 (P=4.32×10(-8)) that were associated with age at onset of AD.ConclusionsThis extended family based genome-wide cox-proportional hazards analysis identified several loci that might be associated with age at onset of AD
Building a network of ADPKD reference centres across Europe: the EuroCYST initiative
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic inherited kidney disease, affecting an estimated 600 000 individuals in Europe. The disease is characterized by age-dependent development of a multiple cysts in the kidneys, ultimately leading to end-stage renal failure and the need of renal replacement therapy in the majority of patients, typically by the fifth or sixth decade of life. The variable disease course, even within the same family, remains largely unexplained. Similarly, assessing disease severity and prognosis in an individual with ADPKD remains difficult. Epidemiological studies are limited due to the fragmentation of ADPKD research in Europe. METHODS: The EuroCYST initiative aims: (i) to harmonize and develop common standards for ADPKD research by starting a collaborative effort to build a network of ADPKD reference centres across Europe and (ii) to establish a multicentric observational cohort of ADPKD patients. This cohort will be used to study factors influencing the rate of disease progression, disease modifiers, disease stage-specific morbidity and mortality, health economic issues and to identify predictive disease progression markers. Overall, 1100 patients will be enrolled in 14 study sites across Europe. Patients will be prospectively followed for at least 3 years. Eligible patients will not have participated in a pharmaceutical clinical trial 1 year before enrollment, have clinically proven ADPKD, an estimated glomerular filtration rate (eGFR) of 30 mL/min/1.73 m(2) and above, and be able to provide written informed consent. The baseline visit will include a physical examination and collection of blood, urine and DNA for biomarker and genetic studies. In addition, all participants will be asked to complete questionnaires detailing self-reported health status, quality of life, socioeconomic status, health-care use and reproductive planning. All subjects will undergo annual follow-up. A magnetic resonance imaging (MRI) scan will be carried out at baseline, and patients are encouraged to undergo a second MRI at 3-year follow-up for qualitative and quantitative kidney and liver assessments. CONCLUSIONS: The ADPKD reference centre network across Europe and the observational cohort study will enable European ADPKD researchers to gain insights into the natural history, heterogeneity and associated complications of the disease as well as how it affects the lives of patients across Europ
Dimerization of Translationally Controlled Tumor Protein Is Essential For Its Cytokine-Like Activity
BACKGROUND:Translationally Controlled Tumor Protein (TCTP) found in nasal lavage fluids of allergic patients was named IgE-dependent histamine-releasing factor (HRF). Human recombinant HRF (HrHRF) has been recently reported to be much less effective than HRF produced from activated mononuclear cells (HRFmn). METHODS AND FINDINGS:We found that only NH(2)-terminal truncated, but not C-terminal truncated, TCTP shows cytokine releasing activity compared to full-length TCTP. Interestingly, only NH(2)-terminal truncated TCTP, unlike full-length TCTP, forms dimers through intermolecular disulfide bonds. We tested the activity of dimerized full-length TCTP generated by fusing it to rabbit Fc region. The untruncated-full length protein (Fc-HrTCTP) was more active than HrTCTP in BEAS-2B cells, suggesting that dimerization of TCTP, rather than truncation, is essential for the activation of TCTP in allergic responses. We used confocal microscopy to evaluate the affinity of TCTPs to its putative receptor. We detected stronger fluorescence in the plasma membrane of BEAS-2B cells incubated with Del-N11TCTP than those incubated with rat recombinant TCTP (RrTCTP). Allergenic activity of Del-N11TCTP prompted us to see whether the NH(2)-terminal truncated TCTP can induce allergic airway inflammation in vivo. While RrTCTP had no influence on airway inflammation, Del-N11TCTP increased goblet cell hyperplasia in both lung and rhinal cavity. The dimerized protein was found in sera from allergic patients, and bronchoalveolar lavage fluids from airway inflamed mice. CONCLUSIONS:Dimerization of TCTP seems to be essential for its cytokine-like activity. Our study has potential to enhance the understanding of pathogenesis of allergic disease and provide a target for allergic drug development
Evidence for the Role of Horizontal Transfer in Generating pVT1, a Large Mosaic Conjugative Plasmid from the Clam Pathogen, Vibrio tapetis
The marine bacterium Vibrio tapetis is the causative agent of the brown ring disease, which affects the clam Ruditapes philippinarum and causes heavy economic losses in North of Europe and in Eastern Asia. Further characterization of V. tapetis isolates showed that all the investigated strains harbored at least one large plasmid. We determined the sequence of the 82,266 bp plasmid pVT1 from the CECT4600T reference strain and analyzed its genetic content. pVT1 is a mosaic plasmid closely related to several conjugative plasmids isolated from Vibrio vulnificus strains and was shown to be itself conjugative in Vibrios. In addition, it contains DNA regions that have similarity with several other plasmids from marine bacteria (Vibrio sp., Shewanella sp., Listonella anguillarum and Photobacterium profundum). pVT1 contains a number of mobile elements, including twelve Insertion Sequences or inactivated IS genes and an RS1 phage element related to the CTXphi phage of V. cholerae. The genetic organization of pVT1 underscores an important role of horizontal gene transfer through conjugative plasmid shuffling and transposition events in the acquisition of new genetic resources and in generating the pVT1 modular organization. In addition, pVT1 presents a copy number of 9, relatively high for a conjugative plasmid, and appears to belong to a new type of replicon, which may be specific to Vibrionaceae and Shewanelleacae
Are We Ready to Treat Diffuse Large B-cell and High-Grade Lymphoma According to Major Genetic Subtypes?
Diffuse Large B-Cell Lymphoma (DLBCL) is a clinically and biologically heterogeneous disease. The revised Classification of Lymphoproliferative diseases published in 2016 (WHO, 2016) refined the previous DLBLC subtypes and identified four categories: DLBCL not otherwise specified (NOS), other lymphomas of large B cells, high grade B-cell lymphoma, and B-cell lymphoma unclassifiable. High grade B-cell lymphomas include the entities carrying MYC, BCL2 and/or BCL6 translocations or cases with blastoid morphology without DH translocations. This classification also acknowledges the cell of origin (COO) classification, that has only a limited impact on the choice of frontline treatment for DLBCL, as most patients still receive R-CHOP chemoimmunotherapy. Attempts to improve the outcomes of specific subgroups, especially COO groups, have so far had limited success. Newer analyses have further subdivided DLBCL into genomically distinct subsets, not yet incorporated in the WHO classification, which may facilitate targeted approaches to therapy. In this review, we discuss the subgroups that are recognized by the WHO 2016 classification, review the newer genomic data, and speculate on how this could alter the treatment landscape of DLBCL in the future. We also discuss novel approaches to salvage therapy in the broad context of the heterogeneity of DLBCL
Recovery after spinal cord relapse in multiple sclerosis is predicted by radial diffusivity
Background: The aim of this study was to determine whether the diffusion tensor-derived radial diffusivity and axial diffusivity, measured in the cortico-spinal tract in the cervical cord, predict clinical recovery after a cord relapse in patients with multiple sclerosis, and change over time
Activation of PPARγ in Myeloid Cells Promotes Lung Cancer Progression and Metastasis
Activation of peroxisome proliferator-activated receptor-γ (PPARγ) inhibits growth of cancer cells including non-small cell lung cancer (NSCLC). Clinically, use of thiazolidinediones, which are pharmacological activators of PPARγ is associated with a lower risk of developing lung cancer. However, the role of this pathway in lung cancer metastasis has not been examined well. The systemic effect of pioglitazone was examined in two models of lung cancer metastasis in immune-competent mice. In an orthotopic model, murine lung cancer cells implanted into the lungs of syngeneic mice metastasized to the liver and brain. As a second model, cancer cells injected subcutaneously metastasized to the lung. In both models systemic administration of pioglitazone increased the rate of metastasis. Examination of tissues from the orthotopic model demonstrated increased numbers of arginase I-positive macrophages in tumors from pioglitazone-treated animals. In co-culture experiments of cancer cells with bone marrow-derived macrophages, pioglitazone promoted arginase I expression in macrophages and this was dependent on the expression of PPARγ in the macrophages. To assess the contribution of PPARγ in macrophages to cancer progression, experiments were performed in bone marrow-transplanted animals receiving bone marrow from Lys-M-Cre+/PPARγflox/flox mice, in which PPARγ is deleted specifically in myeloid cells (PPARγ-Macneg), or control PPARγflox/flox mice. In both models, mice receiving PPARγ-Macneg bone marrow had a marked decrease in secondary tumors which was not significantly altered by treatment with pioglitazone. This was associated with decreased numbers of arginase I-positive cells in the lung. These data support a model in which activation of PPARγ may have opposing effects on tumor progression, with anti-tumorigenic effects on cancer cells, but pro-tumorigenic effects on cells of the microenvironment, specifically myeloid cells
Using high angular resolution diffusion imaging data to discriminate cortical regions
Brodmann's 100-year-old summary map has been widely used for cortical localization in neuroscience. There is a pressing need to update this map using non-invasive, high-resolution and reproducible data, in a way that captures individual variability. We demonstrate here that standard HARDI data has sufficiently diverse directional variation among grey matter regions to inform parcellation into distinct functional regions, and that this variation is reproducible across scans. This characterization of the signal variation as non-random and reproducible is the critical condition for successful cortical parcellation using HARDI data. This paper is a first step towards an individual cortex-wide map of grey matter microstructure, The gray/white matter and pial boundaries were identified on the high-resolution structural MRI images. Two HARDI data sets were collected from each individual and aligned with the corresponding structural image. At each vertex point on the surface tessellation, the diffusion-weighted signal was extracted from each image in the HARDI data set at a point, half way between gray/white matter and pial boundaries. We then derived several features of the HARDI profile with respect to the local cortical normal direction, as well as several fully orientationally invariant features. These features were taken as a fingerprint of the underlying grey matter tissue, and used to distinguish separate cortical areas. A support-vector machine classifier, trained on three distinct areas in repeat 1 achieved 80-82% correct classification of the same three areas in the unseen data from repeat 2 in three volunteers. Though gray matter anisotropy has been mostly overlooked hitherto, this approach may eventually form the foundation of a new cortical parcellation method in living humans. Our approach allows for further studies on the consistency of HARDI based parcellation across subjects and comparison with independent microstructural measures such as ex-vivo histology
Recommendations and guidelines from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 1 -- In vivo small-animal imaging
The value of in vivo preclinical diffusion MRI (dMRI) is substantial.
Small-animal dMRI has been used for methodological development and validation,
characterizing the biological basis of diffusion phenomena, and comparative
anatomy. Many of the influential works in this field were first performed in
small animals or ex vivo samples. The steps from animal setup and monitoring,
to acquisition, analysis, and interpretation are complex, with many decisions
that may ultimately affect what questions can be answered using the data. This
work aims to serve as a reference, presenting selected recommendations and
guidelines from the diffusion community, on best practices for preclinical dMRI
of in vivo animals. In each section, we also highlight areas for which no
guidelines exist (and why), and where future work should focus. We first
describe the value that small animal imaging adds to the field of dMRI,
followed by general considerations and foundational knowledge that must be
considered when designing experiments. We briefly describe differences in
animal species and disease models and discuss how they are appropriate for
different studies. We then give guidelines for in vivo acquisition protocols,
including decisions on hardware, animal preparation, imaging sequences and data
processing, including pre-processing, model-fitting, and tractography. Finally,
we provide an online resource which lists publicly available preclinical dMRI
datasets and software packages, to promote responsible and reproducible
research. An overarching goal herein is to enhance the rigor and
reproducibility of small animal dMRI acquisitions and analyses, and thereby
advance biomedical knowledge.Comment: 69 pages, 6 figures, 1 tabl
In Vitro and In Vivo Antagonism of a G Protein-Coupled Receptor (S1P3) with a Novel Blocking Monoclonal Antibody
Background: S1P 3 is a lipid-activated G protein-couple receptor (GPCR) that has been implicated in the pathological processes of a number of diseases, including sepsis and cancer. Currently, there are no available high-affinity, subtypeselective drug compounds that can block activation of S1P3. We have developed a monoclonal antibody (7H9) that specifically recognizes S1P3 and acts as a functional antagonist. Methodology/Principal Findings: Specific binding of 7H9 was demonstrated by immunocytochemistry using cells that over-express individual members of the S1P receptor family. We show, in vitro, that 7H9 can inhibit the activation of S1P3mediated cellular processes, including arrestin translocation, receptor internalization, adenylate cyclase inhibiton, and calcium mobilization. We also demonstrate that 7H9 blocks activation of S1P3 in vivo, 1) by preventing lethality due to systemic inflammation, and 2) by altering the progression of breast tumor xenografts. Conclusions/Significance: We have developed the first-reported monoclonal antibody that selectively recognizes a lipidactivated GPCR and blocks functional activity. In addition to serving as a lead drug compound for the treatment of sepsi
- …