3 research outputs found

    Circadian Intraocular Pressure Profiles in Chronic Open Angle Glaucomas

    Get PDF
    Purpose: To evaluate circadian intraocular pressure (IOP) profiles in eyes with different types of chronic open-angle glaucoma (COAG) and normal eyes. Methods: This study included 3,561 circadian IOP profiles obtained from 1,408 eyes of 720 Caucasian individuals including glaucoma patients under topical treatment (1,072 eyes) and normal subjects (336 eyes). IOP profiles were obtained by Goldmann applanation tonometry and included measurements at 7 am, noon, 5 pm, 9 pm, and midnight. Results: Fluctuations of circadian IOP in the secondary open-angle glaucoma (SOAG) group (6.96±3.69 mmHg) was significantly (P<0.001) higher than that of the normal pressure glaucoma group (4.89±1.99 mmHg) and normal eyes (4.69±1.95 mmHg); but the difference between the two latter groups was not significant (P=0.47). Expressed as percentages, IOP fluctuations did not vary significantly among any of the study groups. Inter-ocular IOP difference for any measurement was significantly (P<0.001) smaller than the profile fluctuations. In all study groups except the SOAG group, IOP was highest at 7 am, followed by noon, 5 pm, and finally 9 pm or midnight. In the SOAG group, mean IOP measurements did not vary significantly during day and night. Conclusions: In contrast to normal eyes and eyes with primary open-angle glaucoma under topical antiglaucoma treatment, eyes with SOAG under topical treatment do not show the usual circadian IOP profile in which the highest IOP values occur in the morning, and the lowest in the evening or at midnight. These findings may have implications for timing of tonometry. Fluctuation of circadian IOP was highest in SOAG compared to other types of open angle glaucomas

    Heritable features of the optic disc: a novel twin method for determining genetic significance

    No full text
    PURPOSE. Numerous genetic diseases and environmental stimuli affect optic nerve morphology. The purpose of this study was to identify the principal heritable components of visible optic nerve head structures in a population-based sample of twins.METHODS. Fifteen optic nerve specialists viewed stereoscopic optic nerve head photographs (Stereo Viewer-II; Pentax Corp., Tokyo, Japan) from 50 randomly selected monozygotic or dizygotic twin pairs. Before viewing, each expert was questioned about which optic nerve head traits they believed were inherited. After viewing a standardized reaching set, the experts indicated which twin pairs they thought were monozygotic. Participants were then questioned about how their decisions were reached. A rank-ordered Rasch analysis was used to determine the relative weighting and value applied to specific optic nerve head traits.RESULTS. The proportion of twin pairs for which zygosity was correctly identified ranged from 74% to 90% (median, 82%) across the panel. Experts who correctly identified the zygosity in more than 85% of cases placed most weighting on shape and size of the optic disc and cup, whereas experts with the lowest scores placed greater weighting on the optic nerve head vasculature in reaching their decisions.CONCLUSIONS. In determining the genetic components of the optic nerve head, the results of this study suggest that the shape and size of the optic disc and cup are more heritable and should receive a greater priority for quantification than should vascular features
    corecore