306 research outputs found
Conditions for Growth and Retreat of the Laurentide Ice Sheet
Results of three dimensional numerical modelling of the North American ice sheets in response to the Earth's orbital radiation variations are reviewed in relation to the conditions for formation and retreat of the ice sheets. The last interglacial develops as a clear result of the preceding high summer radiation levels and is not very dependent on the climatic paramaterisation. The magnitude and timing of the last glacial maximum provides a means of fine tuning the climatic parameterisation. In between these two periods the extent of ice sheet advances and retreat is strongly sensitive to the magnitude of the ice sheet albedo feedback parameter. The time changes of the radiation, climate, ice sheet cover and bedrock depression are out of phase and as a result equilibrium is not attained. The distribution of land surface elevation plays a key role in the pattern of seeding of the ice sheet growth and the subsequent advances, coalescence and retreat. The dispersal pattern of bedrock in till can be expected to reflect the growth and advance phases of the ice sheet development rather than the maximum configuration. Finally, the cycles of ice ages over the last 500,000 years from the modelling follows the occurrence of extreme summer radiation levels over a wide latitude band of 40-80°N due to coincidence of obliquity and perihelion features superimposed on the hysteresis effects of the ice cover.Les résultats obtenus à partir de la modélisation numérique tri-dimensionnelle des calottes glaciaires de l'Amérique du Nord selon les variations de l'insolation des latitudes sont examinés en fonction des conditions à l'origine de la formation et du retrait des inlandsis. L'existence du dernier interglaciaire est nettement le résultat des hauts niveaux antérieurs d'insolation estivale et très peu celui des paramètres climatiques. L'ampleur et la durée du dernier maximum glaciaire permettent de préciser les paramètres climatiques en cause. Entre ces deux périodes, l'importance de la progression des glaciers et de leur retrait subséquent est grandement influencée par l'albédo de la calotte glaciaire. Les changements temporels de l'insolation, du climat, de la couverture de glace et de l'enfoncement du substratum sont décalés les uns par rapport aux autres, résultant en un déséquilibre. La répartition des altitudes de la surface terrestre joue un rôle clé dans le processus de formation de la calotte glaciaire, ainsi que des récurrences, de la coalescence et du retrait subséquents. On peut s'attendre à ce que le mode de dispersion des dépôts glaciaire expriment davantage les phases de croissance et de récurrence de la calotte glaciaire que sa configuration maximale. En dernier lieu selon le modèle, les cycles de glaciation au cours des 500 000 dernières années suivent l'apparition de niveaux extrêmes d'insolation le long d'une large bande de 40° à 80° de latitude, en raison de l'obliquité de l'écliptique et des caractéristiques du périhélie surimposés à l'effet d'hystéréris causé par la couverture de glace.Die Ergebnisse eines dreidimensionalen numerischen Modells der nordamerikanischen Eisdecken entsprechend den Variationen der Sonneneinstrahlung in verschiedenen Breiten werden in Bezug auf die Bedingungen fur die Bildung und den Riickzug der Eisdecken untersucht. Die letzte Interglazialzeit ist eine klare Folge der vorhergehenden hohen sommerlichen Sonneneinstrahlungen und ist nicht sehr abhângig von den klimatischen Parametern. Der Umfang und die Dauer des letzten glazialen Maximums erlauben die klimatischen Parameter genau zu bestimmen. Zwischen diesen beiden Perioden war der Umfang des Vorrückens und Rückzugs der Eisdecke stark beeinflupt vom Umfang der Albedo-Parameter der Eisdecke. Die zeitlichen Wechsel der Sonneneinstrahlung, des Klimas, der Eisdecke und der Senkung des Landes sind nicht phasengleich, und so wird kein Gleichgewicht erreicht. Die Verteilung der Erdoberflächenerhebungen nimmt eine Schlüsselrolle ein in dër Verteilung des Wachsens der Eisdecke und den darauf folgenden Rückphasen, dem Zusammenwachsen und dem Rückzug. Es ist anzunehmen, dap die Art der Verteilung des Landes in der Grundmoräne eher das Anwachsen und die VorstoBphasen der Eisdecke spiegelt als ihre maximale Gestalt. Zuletzt entsprechen dem Modell nach die Zyklen der Vereisung während der letzten 500,000 Jahre dem Vorkommen extremer sommerlicher Sonneneinstrahlung entlang eines breiten Gùrtels von 40-80o nördlicher Breite, infolge der Übereinstimmung von Neigungswinkel und Charakteristika der Sonnennähe, überlagert durch die Hysteresis-Wirkungen der Eisdecke
Formation of the Isthmus of Panama
The formation of the Isthmus of Panama stands as one of the greatest natural events of the Cenozoic, driving profound biotic transformations on land and in the oceans. Some recent studies suggest that the Isthmus formed manymillions of years earlier than the widely recognized age of approximately 3 million years ago (Ma), a result that if true would revolutionize our understanding of environmental, ecological, and evolutionary change across the Americas. To bring clarity to the question of when the Isthmus of Panama formed, we provide an exhaustive review and reanalysis of geological, paleontological, and molecular records. These independent lines of evidence converge upon a cohesive narrative of gradually emerging land and constricting seaways,withformationof theIsthmus of Panama sensustricto around 2.8 Ma. The evidence used to support an older isthmus is inconclusive, and we caution against the uncritical acceptance of an isthmus before the Pliocene.Facultad de Ciencias Naturales y Muse
Anaerobic animals from an ancient, anoxic ecological niche
Tiny marine animals that complete their life cycle in the total absence of light and oxygen are reported by Roberto Danovaro and colleagues in this issue of BMC Biology. These fascinating animals are new members of the phylum Loricifera and possess mitochondria that in electron micrographs look very much like hydrogenosomes, the H2-producing mitochondria found among several unicellular eukaryotic lineages. The discovery of metazoan life in a permanently anoxic and sulphidic environment provides a glimpse of what a good part of Earth's past ecology might have been like in 'Canfield oceans', before the rise of deep marine oxygen levels and the appearance of the first large animals in the fossil record roughly 550-600 million years ago. The findings underscore the evolutionary significance of anaerobic deep sea environments and the anaerobic lifestyle among mitochondrion-bearing cells. They also testify that a fuller understanding of eukaryotic and metazoan evolution will come from the study of modern anoxic and hypoxic habitats
Geographical limits to species-range shifts are suggested by climate velocity
The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the \u27business as usual\u27 climate scenario (representative concentration pathway (RCP) 8.5)8 representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness
Comparable Ages for the Independent Origins of Electrogenesis in African and South American Weakly Electric Fishes
One of the most remarkable examples of convergent evolution among vertebrates is illustrated by the independent origins of an active electric sense in South American and African weakly electric fishes, the Gymnotiformes and Mormyroidea, respectively. These groups independently evolved similar complex systems for object localization and communication via the generation and reception of weak electric fields. While good estimates of divergence times are critical to understanding the temporal context for the evolution and diversification of these two groups, their respective ages have been difficult to estimate due to the absence of an informative fossil record, use of strict molecular clock models in previous studies, and/or incomplete taxonomic sampling. Here, we examine the timing of the origins of the Gymnotiformes and the Mormyroidea using complete mitogenome sequences and a parametric Bayesian method for divergence time reconstruction. Under two different fossil-based calibration methods, we estimated similar ages for the independent origins of the Mormyroidea and Gymnotiformes. Our absolute estimates for the origins of these groups either slightly postdate, or just predate, the final separation of Africa and South America by continental drift. The most recent common ancestor of the Mormyroidea and Gymnotiformes was found to be a non-electrogenic basal teleost living more than 85 millions years earlier. For both electric fish lineages, we also estimated similar intervals (16–19 or 22–26 million years, depending on calibration method) between the appearance of electroreception and the origin of myogenic electric organs, providing rough upper estimates for the time periods during which these complex electric organs evolved de novo from skeletal muscle precursors. The fact that the Gymnotiformes and Mormyroidea are of similar age enhances the comparative value of the weakly electric fish system for investigating pathways to evolutionary novelty, as well as the influences of key innovations in communication on the process of species radiation
Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron
The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is . The combined inclusive and differential asymmetries are consistent with recent standard model predictions
Human malarial disease: a consequence of inflammatory cytokine release
Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease
Alignment of the CMS silicon tracker during commissioning with cosmic rays
This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,
and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS
(Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia);
Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG,
and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT,
SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
- …