4 research outputs found

    Heat shock protein 70 or heat shock protein 27 overexpressed in human endothelial cells during posthypoxic reoxygenation can protect from delayed apoptosis

    No full text
    Overexpression of heat shock protein (Hsp) 70 and Hsp27 in vivo was proclaimed as a potential tool in therapy of ischemia-reperfusion injury. However, it was so far not known whether these Hsps can beneficially act when increased in cells just at the stage of postischemic reperfusion. This issue was examined in a model of ischemia-reperfusion stress when cultures of endothelial cells (EC) from human umbilical vein were infected with virus-based vectors expressing Hsp70 or Hsp27, or Hsp56, or green fluorescent protein (GFP) and exposed to 20 hours of hypoxia followed by reoxygenation. The infection was performed either 10 hours before hypoxia or immediately after hypoxia, or at different time points of reoxygenation. Only low cell death was detected during hypoxia, but later, up to 40% of the treated cells died via caspase-dependent apoptosis between 6 and 12 hours of reoxygenation. The percentage of apoptotic cells was 1.6- to 3-fold greater in Hsp56- and GFP-infected EC than in Hsp70- or Hsp27-infected EC. The last 2 groups exhibited a lesser extent of procaspase-9 and procaspase-3 activation within 6–9 hours of reoxygenation. The cytoprotective effects of overexpressed Hsp70 and Hsp27 were observed not only in the case of infection before hypoxia but also when EC were infected at the start of reoxygenation or 1–2 hours later. An increase in the Hsp70 and Hsp27 levels in infected EC correlated well with their resistance to apoptosis under reoxygenation. These findings suggest that overexpression of Hsp70 or Hsp27, if it occurs in the involved cells at the early stage of postischemic reperfusion, can still be cytoprotective

    Regulation of stress-induced intracellular sorting and chaperone function of Hsp27 (HspB1) in mammalian cells

    No full text
    In vitro, small Hsps (heat-shock proteins) have been shown to have chaperone function capable of keeping unfolded proteins in a form competent for Hsp70-dependent refolding. However, this has never been confirmed in living mammalian cells. In the present study, we show that Hsp27 (HspB1) translocates into the nucleus upon heat shock, where it forms granules that co-localize with IGCs (interchromatin granule clusters). Although heat-induced changes in the oligomerization status of Hsp27 correlate with its phosphorylation and nuclear translocation, Hsp27 phosphorylation alone is not sufficient for effective nuclear translocation of HspB1. Using firefly luciferase as a heat-sensitive reporter protein, we demonstrate that HspB1 expression in HspB1-deficient fibroblasts enhances protein refolding after heat shock. The positive effect of HspB1 on refolding is completely diminished by overexpression of Bag-1 (Bcl-2-associated athanogene), the negative regulator of Hsp70, consistent with the idea of HspB1 being the substrate holder for Hsp70. Although HspB1 and luciferase both accumulate in nuclear granules after heat shock, our results suggest that this is not related to the refolding activity of HspB1. Rather, granular accumulation may reflect a situation of failed refolding where the substrate is stored for subsequent degradation. Consistently, we found 20S proteasomes concentrated in nuclear granules of HspB1 after heat shock. We conclude that HspB1 contributes to an increased chaperone capacity of cells by binding unfolded proteins that are hereby kept competent for refolding by Hsp70 or that are sorted to nuclear granules if such refolding fails
    corecore