46 research outputs found

    MAO-B Elevation in Mouse Brain Astrocytes Results in Parkinson's Pathology

    Get PDF
    Age-related increases in monoamine oxidase B (MAO-B) may contribute to neurodegeneration associated with Parkinson's disease (PD). The MAO-B inhibitor deprenyl, a long-standing antiparkinsonian therapy, is currently used clinically in concert with the dopamine precursor L-DOPA. Clinical studies suggesting that deprenyl treatment alone is not protective against PD associated mortality were targeted to symptomatic patients. However, dopamine loss is at least 60% by the time PD is symptomatically detectable, therefore lack of effect of MAO-B inhibition in these patients does not negate a role for MAO-B in pre-symptomatic dopaminergic loss. In order to directly evaluate the role of age-related elevations in astroglial MAO-B in the early initiation or progression of PD, we created genetically engineered transgenic mice in which MAO-B levels could be specifically induced within astroglia in adult animals. Elevated astrocytic MAO-B mimicking age related increase resulted in specific, selective and progressive loss of dopaminergic neurons in the substantia nigra (SN), the same subset of neurons primarily impacted in the human condition. This was accompanied by other PD-related alterations including selective decreases in mitochondrial complex I activity and increased mitochondrial oxidative stress. Along with a global astrogliosis, we observed local microglial activation within the SN. These pathologies correlated with decreased locomotor activity. Importantly, these events occurred even in the absence of the PD-inducing neurotoxin MPTP. Our data demonstrates that elevation of murine astrocytic MAO-B by itself can induce several phenotypes of PD, signifying that MAO-B could be directly involved in multiple aspects of disease neuropathology. Mechanistically this may involve increases in membrane permeant H2O2 which can oxidize dopamine within dopaminergic neurons to dopaminochrome which, via interaction with mitochondrial complex I, can result in increased mitochondrial superoxide. Our inducible astrocytic MAO-B transgenic provides a novel model for exploring pathways involved in initiation and progression of several key features associated with PD pathology and for therapeutic drug testing

    The restorative role of annexin A1 at the blood–brain barrier

    Get PDF
    Annexin A1 is a potent anti-inflammatory molecule that has been extensively studied in the peripheral immune system, but has not as yet been exploited as a therapeutic target/agent. In the last decade, we have undertaken the study of this molecule in the central nervous system (CNS), focusing particularly on the primary interface between the peripheral body and CNS: the blood–brain barrier. In this review, we provide an overview of the role of this molecule in the brain, with a particular emphasis on its functions in the endothelium of the blood–brain barrier, and the protective actions the molecule may exert in neuroinflammatory, neurovascular and metabolic disease. We focus on the possible new therapeutic avenues opened up by an increased understanding of the role of annexin A1 in the CNS vasculature, and its potential for repairing blood–brain barrier damage in disease and aging

    Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models

    Get PDF

    Fitting a bivariate measurement error model for episodically consumed dietary components

    Full text link
    There has been great public health interest in estimating usual, i.e., long-term average, intake of episodically consumed dietary components that are not consumed daily by everyone, e.g., fish, red meat and whole grains. Short-term measurements of episodically consumed dietary components have zero-inflated skewed distributions. So-called two-part models have been developed for such data in order to correct for measurement error due to within-person variation and to estimate the distribution of usual intake of the dietary component in the univariate case. However, there is arguably much greater public health interest in the usual intake of an episodically consumed dietary component adjusted for energy (caloric) intake, e.g., ounces of whole grains per 1000 kilo-calories, which reflects usual dietary composition and adjusts for different total amounts of caloric intake. Because of this public health interest, it is important to have models to fit such data, and it is important that the model-fitting methods can be applied to all episodically consumed dietary components. We have recently developed a nonlinear mixed effects model (Kipnis, et al., 2010), and have fit it by maximum likelihood using nonlinear mixed effects programs and methodology (the SAS NLMIXED procedure). Maximum likelihood fitting of such a nonlinear mixed model is generally slow because of 3-dimensional adaptive Gaussian quadrature, and there are times when the programs either fail to converge or converge to models with a singular covariance matrix. For these reasons, we develop a Monte-Carlo (MCMC) computation of fitting this model, which allows for both frequentist and Bayesian inference. There are technical challenges to developing this solution because one of the covariance matrices in the model is patterned. Our main application is to the National Institutes of Health (NIH)-AARP Diet and Health Study, where we illustrate our methods for modeling the energy-adjusted usual intake of fish and whole grains. We demonstrate numerically that our methods lead to increased speed of computation, converge to reasonable solutions, and have the flexibility to be used in either a frequentist or a Bayesian manner. © 2011 Berkeley Electronic Press. All rights reserved

    The healthy eating Index-2010 is a valid and reliable measure of diet quality according to the 2010 dietary guidelines for Americans

    Full text link
    The Healthy Eating Index (HEI), a measure of diet quality, was updated to reflect the 2010 Dietary Guidelines for Americans and the accompanying USDA Food Patterns. To assess the validity and reliability of the HEI-2010, exemplary menus were scored and 2 24-h dietary recalls from individuals aged ≥2 y from the 2003-2004 NHANES were used to estimate multivariate usual intake distributions and assess whether the HEI-2010 1) has a distribution wide enough to detect meaningful differences in diet quality among individuals, 2) distinguishes between groups with known differences in diet quality by using t tests, 3) measures diet quality independently of energy intake by using Pearson correlation coefficients, 4) has > 1 underlying dimension by using principal components analysis (PCA), and 5) is internally consistent by calculating Cronbach's coefficient α. HEI-2010 scores were at or near the maximum levels for the exemplary menus. The distribution of scores among the population was wide (5th percentile = 31.7; 95th percentile = 70.4). As predicted, men's diet quality (mean HEI-2010 total score = 49.8) was poorer than women's (52.7), younger adults' diet quality (45.4) was poorer than older adults' (56.1), and smokers' diet quality (45.7) was poorer than nonsmokers' (53.3) (P < 0.01). Low correlations with energy were observed for HEI-2010 total and component scores (|r| ≤ 0.21). Cronbach's coefficient a was 0.68, supporting the reliability of the HEI-2010 total score as an indicator of overall diet quality. Nonetheless, PCA indicated multiple underlying dimensions, highlighting the fact that the component scores are equally as important as the total. A comparable reevaluation of the HEI-2005 yielded similar results. This study supports the validity and the reliability of both versions of the HEI. © 2014 American Society for Nutrition
    corecore