16,183 research outputs found
Dynamic Evolution of Toll-Like Receptor Multigene Families in Echinoderms
The genome sequence of the purple sea urchin, Strongylocentrotus purpuratus, a large and long-lived invertebrate, provides a new perspective on animal immunity. Analysis of this genome uncovered a highly complex immune system in which the gene families that encode homologs of the pattern recognition receptors that form the core of vertebrate innate immunity are encoded in large multigene families. The sea urchin genome contains 253 Toll-like receptor (TLR) sequences, more than 200 Nod-like receptors and 1095 scavenger receptor cysteine-rich domains, a 10-fold expansion relative to vertebrates. Given their stereotypic protein structure and simple intron-exon architecture, the TLRs are the most tractable of these families for more detailed analysis. A role for these receptors in immune defense is suggested by their similarity to TLRs in other organisms, sequence diversity, and expression in immunologically active tissues, including phagocytes. The complexity of the sea urchin TLR multigene families is largely derived from expansions independent of those in vertebrates and protostomes, although a small family of TLRs with structure similar to that of Drosophila Toll can be traced to an ancient eumetazoan ancestor. Several other echinoderm sequences are now available, including Lytechinus variegatus, as well as partial sequences from two other sea urchin species. Here, we present an analysis of the invertebrate deuterostome TLRs with emphasis on the echinoderms. Representatives of most of the S. purpuratus TLR subfamilies and homologs of the mccTLR sequences are found in L. variegatus, although the L. variegatus TLR gene family is notably smaller (68 TLR sequences). The phylogeny of these genes within sea urchins highlights lineage-specific expansions at higher resolution than is evident at the phylum level. These analyses identify quickly evolving TLR subfamilies that are likely to have novel immune recognition functions and other, more stable, subfamilies that may function more similarly to those of vertebrates
On the similarity of Information Energy to Dark Energy
Information energy is shown here to have properties similar to those of dark
energy. The energy associated with each information bit of the universe is
found to be defined identically to the characteristic energy of a cosmological
constant. Two independent methods are used to estimate the universe information
content of ~10^91 bits, a value that provides an information energy total
comparable to that of the dark energy. Information energy is also found to have
a significantly negative equation of state parameter, w < -0.4, and thus exerts
a negative pressure, similar to dark energy.Comment: 5 pages, no figures, no table
Managing the impact of invasive species: the value of knowing the density–impact curve
Economic impacts of invasive species worldwide are substantial. Management strategies have been incorporated in population models to assess the effectiveness of management for reducing density, with the implicit assumption that economic impact of the invasive species will also decline. The optimal management effort, however, is that which minimizes the sum of both the management and impact costs. The relationship between population density and economic impact (what we call the “density–impact curve”) is rarely examined in a management context and could take several nonlinear forms. Here we determine the effects of population dynamics and density–impact curves of different shapes on optimal management effort and discover cases where management is either highly effective or a waste of resources. When an inaccurate density–impact curve is used, the increase in total costs due to over- or underinvestment in management can be large. We calculate the increase in total costs incurred if the density–impact curve is incorrect and find that the greater the maximum impact caused by an invasive species, the more important it is not only to reduce its density, but also to know the shape of the density–impact relationship accurately. Lack of information regarding the relationship between density and economic impact causes the most acute problems for invaders that cause high impact at low density, where management typically will be too little, too late. For species that are only problematic at high density, ignorance of the density–impact curve can lead to overinvestment in management with little reduction in impact
- …