6 research outputs found

    Nonhydrostatic and surfbeat model predictions of extreme wave run-up in fringing reef environments

    No full text
    The accurate prediction of extreme wave run-up is important for effective coastal engineering design and coastal hazard management. While run-up processes on open sandy coasts have been reasonably well-studied, very few studies have focused on understanding and predicting wave run-up at coral reef-fronted coastlines. This paper applies the short-wave resolving, Nonhydrostatic (XB-NH) and short-wave averaged, Surfbeat (XB-SB) modes of the XBeach numerical model to validate run-up using data from two 1D (alongshore uniform) fringing-reef profiles without roughness elements, with two objectives: i) to provide insight into the physical processes governing run-up in such environments; and ii) to evaluate the performance of both modes in accurately predicting run-up over a wide range of conditions. XBeach was calibrated by optimizing the maximum wave steepness parameter (maxbrsteep) in XB-NH and the dissipation coefficient (alpha) in XB-SB) using the first dataset; and then applied to the second dataset for validation. XB-NH and XB-SB predictions of extreme wave run-up (Rmax and R2%) and its components, infragravity- and sea-swell band swash (SIG and SSS) and shoreline setup (<η>), were compared to observations. XB-NH more accurately simulated wave transformation but under-predicted shoreline setup due to its exclusion of parameterized wave-roller dynamics. XB-SB under-predicted sea-swell band swash but overestimated shoreline setup due to an over-prediction of wave heights on the reef flat. Run-up (swash) spectra were dominated by infragravity motions, allowing the short-wave (but not wave group) averaged model (XB-SB) to perform comparably well to its more complete, short-wave resolving (XB-NH) counterpart. Despite their respective limitations, both modes were able to accurately predict Rmax and R2%.Hydraulic Structures and Flood Ris

    Improving predictions of nearshore wave dynamics and coastal impacts using Smooth Particle Hydrodynamic models

    No full text
    In this study we assess the capabilities of the mesh-free, Lagrangian particle method (Smooth Particle Hydrodynamics, SPH) method to simulate the detailed hydrodynamic processes generated by both spilling and plunging breaking waves within the surf zone, and present how the approach can be used to predict a broad spectrum of hydrodynamic processes relevant to coastal applications where wave breaking is important. The weakly-compressible SPH code DualSPHysics was applied to simulate wave breaking over two bathymetric profiles (a plane beach and fringing reef) and compared to experimental flume measurements of waves, currents, and mean water levels. We demonstrate how the model can accurately reproduce a broad range of relevant hydrodynamic processes, ranging from the nonlinear evolution of wave shapes across the surfzone, wave setup distributions, mean current profiles and wave runup. We compare the surfzone predictions with results from other classes of wave models, and illustrate some of the advantages of the SPH approach (particularly in resolving the hydrodynamics above the wave trough). Overall, the results reveal how the mesh-free SPH approach can accurately reproduce the detailed wave breaking processes with comparable skill to state-of-the-art mesh-based Computational Fluid Dynamic models, and how it can be used as a valuable tool to develop new physical insight into surf zone processes.Accepted Author ManuscriptHydraulic Structures and Flood Ris

    The influence of submerged coastal structures on nearshore flows and wave runup

    No full text
    Engineered and natural submerged coastal structures (e.g., submerged breakwaters and reefs) modify incident wave fields and thus can alter hydrodynamic processes adjacent to coastlines. Although submerged structures are generally assumed to promote beach protection by dissipating waves offshore and creating sheltered conditions in their lee, their interaction with waves can result in mean wave-driven circulation patterns that may either promote shoreline accretion or erosion. Here, we analyse the mean flow patterns and shoreline water levels (wave runup) in the lee of idealised impermeable submerged structures with a phase-resolved nonhydrostatic numerical model. Waves propagating over submerged structures can drive either a 2-cell mean (wave-averaged) circulation, which is characterised by diverging flows behind the structure and at the shoreline, or 4-cell circulation, with converging flows at the shoreline and diverging flows in the immediate lee of the structure. The numerical results show that the mode of circulation can be predicted with a set of relationships depending on the incoming wave heights, the structure crest level, and distance to the shoreline (or structure depth). Qualitative agreement between the mean flow and proxies for the sediment transport using an energetics approach suggest that the mean flow can be a robust proxy for inferring sediment transport patterns. For the cases considered, the submerged structures had a minimal influence on shoreline wave setup and wave runup despite the wave energy dissipation by the structures due to alongshore wave energy fluxes in the lee. Consequently, these results suggest that the coastal protection provided by the range of impermeable submerged structures we modelled is primarily due to their capacity to promote beach accretion.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Environmental Fluid Mechanic

    An efficient method to calculate depth-integrated, phase-averaged momentum balances in non-hydrostatic models

    No full text
    Analysis of the mean (wave-averaged) momentum balance is a common approach used to explain the physical forcing driving wave set-up and mean currents in the nearshore zone. Traditionally this approach has been applied to phase-averaged models but has more recently been applied to phase-resolving models using post-processing, whereby model output is used to calculate each of the momentum terms. While phase-resolving models have the advantage of capturing the nonlinear properties of waves propagating in the nearshore (making them advantageous to enhance understanding of nearshore processes), the post-processing calculation of the momentum terms does not guarantee that the momentum balance closes. We show that this is largely due to the difficulty (or impossibility) of being consistent with the numerical approach. If the residual is of a similar magnitude as any of the relevant momentum terms (which is common with post-processing methods as we show), the analysis is largely compromised. Here we present a new method to internally calculate and extract the depth-integrated, mean momentum terms in the phase-resolving non-hydrostatic wave-flow model SWASH in a manner that is consistent with the numerical implementation. Further, we demonstrate the utility of the new method with two existing physical model studies. By being consistent with the numerical framework, the internal method calculates the momentum terms with a much lower residual at computer precision, combined with greatly reduced calculation time and output storage requirements compared to post-processing techniques. The method developed here allows the accurate evaluation of the depth-integrated, mean momentum terms of wave-driven flows while taking advantage of the more complete representation of the wave dynamics offered by phase-resolving models. Furthermore, it provides an opportunity for advances in the understanding of nearshore processes particularly at more complex sites where wave nonlinearity and energy transfers are important.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Environmental Fluid Mechanic

    A Numerical Study of Wave-Driven Mean Flows and Setup Dynamics at a Coral Reef-Lagoon System

    No full text
    Two-dimensional mean wave-driven flow and setup dynamics were investigated at a reef-lagoon system at Ningaloo Reef, Western Australia, using the numerical wave-flow model, SWASH. Phase-resolved numerical simulations of the wave and flow fields, validated with highly detailed field observations (including >10 sensors through the energetic surf zone), were used to quantify the main mechanisms that govern the mean momentum balances and resulting mean current and setup patterns, with particular attention to the role of nonlinear wave shapes. Momentum balances from the phase-resolved model indicated that onshore flows near the reef crest were primarily driven by the wave force (dominated by radiation stress gradients) due to intense breaking, whereas the flow over the reef flat and inside the lagoon and channels was primarily driven by a pressure gradient. Wave setup inside the lagoon was primarily controlled by the wave force and bottom stress. The bottom stress reduced the setup on the reef flat and inside the lagoon. Excluding the bottom stress contribution in the setup balance resulted in an over prediction of the wave-setup inside the lagoon by up to 200–370%. The bottom stress was found to be caused by the combined presence of onshore directed wave-driven currents and (nonlinear) waves. Exclusion of the bottom stress contribution from nonlinear wave shapes led to an over prediction of the setup inside the lagoon by approximately 20–40%. The inclusion of the nonlinear wave shape contribution to the bottom stress term was found to be particularly relevant in reef regions that experience a net onshore mass flux over the reef crest.Environmental Fluid Mechanic

    Wave-Driven Hydrodynamic Processes Over Fringing Reefs With Varying Slopes, Depths, and Roughness: Implications for Coastal Protection

    No full text
    Wave breaking on the steep fore-reef slopes of shallow fringing reefs can be effective at dissipating incident sea-swell waves prior to reaching reef shorelines. However, wave setup and free infragravity waves generated during the sea-swell breaking process are often the largest contributors to wave-driven water levels (wave runup) at the shoreline. Laboratory flume experiments and a two-dimensional vertical phase-resolving nonhydrostatic wave-flow model, which includes a canopy model to predict drag forces generated by roughness elements, were used to investigate wave-driven water levels for along-shore uniform fringing reefs. In contrast to many previous studies, both the laboratory experiment and the numerical model account for the effects of large bottom roughness. The numerical model reproduced the observations of the wave transformation and runup over both smooth and rough reef profiles. The numerical model was then extended to quantify the influence of reef geometry and compared to simulations of plane beaches lacking a reef. For a fixed offshore forcing condition, the fore-reef slope controlled wave runup on reef-fronted beaches, whereas the beach slope controlled wave runup on plane beaches. As a result, the coastal protection utility of reefs is dependent on these slopes. For our examples, with a fore-reef slope of 1/5 and a 500 m prototype reef flat length, a beach slope of ∼1/30 marked the transition between the reef providing runup reduction for steeper beach slopes and enhancing wave runup for milder slopes. Roughness coverage, spacing, dimensions, and drag coefficient were investigated, with results indicating the greatest runup reductions were due to tall roughness elements on the reef flat.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Environmental Fluid Mechanic
    corecore