37 research outputs found
A Point Mutation in a Herpesvirus Polymerase Determines Neuropathogenicity
Infection with equid herpesvirus type 1 (EHV-1) leads to respiratory disease, abortion, and neurologic disorders in horses. Molecular epidemiology studies have demonstrated that a single nucleotide polymorphism resulting in an amino acid variation of the EHV-1 DNA polymerase (N752/D752) is significantly associated with the neuropathogenic potential of naturally occurring strains. To test the hypothesis that this single amino acid exchange by itself influences neuropathogenicity, we generated recombinant viruses with differing polymerase sequences. Here we show that the N752 mutant virus caused no neurologic signs in the natural host, while the D752 virus was able to cause inflammation of the central nervous system and ataxia. Neurologic disease induced by the D752 virus was concomitant with significantly increased levels of viremia (p = 0.01), but the magnitude of virus shedding from the nasal mucosa was similar between the N752 and D752 viruses. Both viruses replicated with similar kinetics in fibroblasts and epithelial cells, but exhibited differences in leukocyte tropism. Last, we observed a significant increase (p < 0.001) in sensitivity of the N752 mutant to aphidicolin, a drug targeting the viral polymerase. Our results demonstrate that a single amino acid variation in a herpesvirus enzyme can influence neuropathogenic potential without having a major effect on virus shedding from infected animals, which is important for horizontal spread in a population. This observation is very interesting from an evolutionary standpoint and is consistent with data indicating that the N752 DNA pol genotype is predominant in the EHV-1 population, suggesting that decreased viral pathogenicity in the natural host might not be at the expense of less efficient inter-individual transmission
Identification of a novel nidovirus in an outbreak of fatal respiratory disease in ball pythons (Python regius)
Background: Respiratory infections are important causes of morbidity and mortality in reptiles; however, the causative agents are only infrequently identified. Findings: Pneumonia, tracheitis and esophagitis were reported in a collection of ball pythons (Python regius). Eight of 12 snakes had evidence of bacterial pneumonia. High-throughput sequencing of total extracted nucleic acids from lung, esophagus and spleen revealed a novel nidovirus. PCR indicated the presence of viral RNA in lung, trachea, esophagus, liver, and spleen. In situ hybridization confirmed the presence of intracellular, intracytoplasmic viral nucleic acids in the lungs of infected snakes. Phylogenetic analysis based on a 1,136 amino acid segment of the polyprotein suggests that this virus may represent a new species in the subfamily Torovirinae.
Conclusions: This report of a novel nidovirus in ball pythons may provide insight into the pathogenesis of respiratory disease in this species and enhances our knowledge of the diversity of nidoviruses
110 Years of Avipoxvirus in the Galapagos Islands
The role of disease in regulating populations is controversial, partly owing to the absence of good disease records in historic wildlife populations. We examined birds collected in the Galapagos Islands between 1891 and 1906 that are currently held at the California Academy of Sciences and the Zoologisches Staatssammlung Muenchen, including 3973 specimens representing species from two well-studied families of endemic passerine birds: finches and mockingbirds. Beginning with samples collected in 1899, we observed cutaneous lesions consistent with Avipoxvirus on 226 (6.3%) specimens. Histopathology and viral genotyping of 59 candidate tissue samples from six islands showed that 21 (35.6%) were positive for Avipoxvirus, while alternative diagnoses for some of those testing negative by both methods were feather follicle cysts, non-specific dermatitis, or post mortem fungal colonization. Positive specimens were significantly nonrandomly distributed among islands both for mockingbirds (San Cristobal vs. Espanola, Santa Fe and Santa Cruz) and for finches (San Cristobal and Isabela vs. Santa Cruz and Floreana), and overall highly significantly distributed toward islands that were inhabited by humans (San Cristobal, Isabela, Floreana) vs. uninhabited at the time of collection (Santa Cruz, Santa Fe, Espanola), with only one positive individual on an uninhabited island. Eleven of the positive specimens sequenced successfully were identical at four diagnostic sites to the two canarypox variants previously described in contemporary Galapagos passerines. We conclude that this virus was introduced late in 1890′s and was dispersed among islands by a variety of mechanisms, including regular human movements among colonized islands. At present, this disease represents an ongoing threat to the birds on the Galapagos Islands
Effective Treatment of Respiratory Alphaherpesvirus Infection Using RNA Interference
BACKGROUND: Equine herpesvirus type 1 (EHV-1), a member of the Alphaherpesvirinae, is spread via nasal secretions and causes respiratory disease, neurological disorders and abortions. The virus is a significant equine pathogen, but current EHV-1 vaccines are only partially protective and effective metaphylactic and therapeutic agents are not available. Small interfering RNAs (siRNA's), delivered intranasally, could prove a valuable alternative for infection control. siRNA's against two essential EHV-1 genes, encoding the viral helicase (Ori) and glycoprotein B, were evaluated for their potential to decrease EHV-1 infection in a mouse model. METHODOLOGY/PRINCIPAL FNDINGS: siRNA therapy in vitro significantly reduced virus production and plaque size. Viral titers were reduced 80-fold with 37.5 pmol of a single siRNA or with as little as 6.25 pmol of each siRNA when used in combination. siRNA therapy in vivo significantly reduced viral replication and clinical signs. Intranasal treatment did not require a transport vehicle and proved effective when given up to 12 h before or after infection. CONCLUSIONS/SIGNIFICANCE: siRNA treatment has potential for both prevention and early treatment of EHV-1 infections
Recommended from our members
110 years of Avipoxvirus in the Galapagos Islands.
The role of disease in regulating populations is controversial, partly owing to the absence of good disease records in historic wildlife populations. We examined birds collected in the Galapagos Islands between 1891 and 1906 that are currently held at the California Academy of Sciences and the Zoologisches Staatssammlung Muenchen, including 3973 specimens representing species from two well-studied families of endemic passerine birds: finches and mockingbirds. Beginning with samples collected in 1899, we observed cutaneous lesions consistent with Avipoxvirus on 226 (6.3%) specimens. Histopathology and viral genotyping of 59 candidate tissue samples from six islands showed that 21 (35.6%) were positive for Avipoxvirus, while alternative diagnoses for some of those testing negative by both methods were feather follicle cysts, non-specific dermatitis, or post mortem fungal colonization. Positive specimens were significantly nonrandomly distributed among islands both for mockingbirds (San Cristobal vs. Espanola, Santa Fe and Santa Cruz) and for finches (San Cristobal and Isabela vs. Santa Cruz and Floreana), and overall highly significantly distributed toward islands that were inhabited by humans (San Cristobal, Isabela, Floreana) vs. uninhabited at the time of collection (Santa Cruz, Santa Fe, Espanola), with only one positive individual on an uninhabited island. Eleven of the positive specimens sequenced successfully were identical at four diagnostic sites to the two canarypox variants previously described in contemporary Galapagos passerines. We conclude that this virus was introduced late in 1890's and was dispersed among islands by a variety of mechanisms, including regular human movements among colonized islands. At present, this disease represents an ongoing threat to the birds on the Galapagos Islands