102 research outputs found
Recommended from our members
Spatiotemporal Partitioning of Two Invasive Ungulates in Guam (Abstract)
Interspecific interactions are crucial in shaping ecosystem dynamics (Connell 1983, Tilman 1987, Barbosa and Castellanos 2005). Non-native ungulates have been introduced across the globe (Ferretti and Lovari 2014, Volery et al. 2021) and in environments where multiple invasives thrive, these co-occurring sympatric species may shift spatiotemporal patterns to minimize interspecific competition (Schoener 1974, Chesson 2000). Spatiotemporal shifts can lead to cascading effects to the native flora and fauna (Simberloff and Von Holle 1999). Given the potential negative impacts, understanding these interactions is vital for effective management of these ecosystems. Two invasive ungulates, the wild pig (Sus scrofa) and the Philippine deer (Rusa marianna), have inhabited much of Guam since their introduction in the 1600s and 1700s (Intoh 1986, Wiles et al. 1999) and both have been associated with significant ecological damage throughout the island (Conroy 1989). Despite sharing similar invasive roles, they seemingly coexist throughout areas of Guam. Subsequently, efforts are increasingly put forth to remove both species from partitioned areas at one time. To aid these efforts and understand invasive species interactions, we studied the seasonal spatiotemporal patterns of wild pigs and Philippine deer during February 2021-March 2022. Specifically, we used GPS collars from 39 wild pigs and 22 deer to examine spatial and temporal partitioning and assess dynamic spatiotemporal interactions between interspecific dyads at seasonal scales. We investigated spatial partitioning of wild pigs and deer by estimating the spatial overlap between home ranges and core areas of interspecific neighboring dyads. We estimated temporal overlap in diel activity to evaluate temporal partitioning between the species. Lastly, we examined dynamic spatiotemporal interactions, those that occur simultaneously in space and time, by estimating movement interactions between neighboring interspecific dyads to understand attraction and avoidance. We found spatial overlap between the species decreased significantly in core areas compared to home ranges in both seasons. Within home ranges, deer were approximately 3 times more likely to be within pig ranges than vice versa. This effect diminished at core areas such that deer were only 1.3× more likely to be within pig core ranges than vice versa. Temporal overlap of activity between wild pigs and deer was very high during dry and wet seasons, with overlapping activity peaks during crepuscular hours. At a critical distance threshold of 50m, we estimated 77 movement interactions from 58 dyad pairs over 3 seasons and found that only 2 (2.6%) and 4 (5.2%) movement interactions were considered avoidant and attractive, respectively, and the remaining 71 interactions (92.2%) were neutral
Position of Aleutian Low Drives Dramatic Inter-Annual Variability in Atmospheric Transport of Glacial Iron to the Gulf of Alaska
Our understanding of glacial flour dust storm delivery of iron to the Gulf of Alaska (GoA) is limited. We interpret concurrent time-series satellite, meteorological, and aerosol geochemical data from the GoA to examine how inter-annual variability in regional weather patterns impacts offshore aerosol glacial iron transport. In 2011, when a northerly Aleutian Low (AL) was persistent during fall, dust emission was suppressed and highly intermittent due to prevalent wet conditions, low winds and a deep early season snowpack. Conversely, in 2012, frequent and prolonged fall dust storms and high offshore glacial iron transport were driven by dry conditions and strong offshore winds generated by persistent strong high pressure over the Alaskan interior and Bering Sea and a southerly AL. Remarkable inter-annual variability in offshore glacial aerosol iron transport indicates that the role of glacial dust in GoA nutrient cycles is likely highly dynamic and particularly sensitive to regional climate forcing
Measurements of Deuteron Photodisintegration up to 4.0 GeV
The first measurements of the differential cross section for the d(gamma,p)n
reaction up to 4.0 GeV were performed at Continuous Electron Beam Accelerator
Facility (CEBAF) at Jefferson Lab. We report the cross sections at the proton
center-of-mass angles of 36, 52, 69 and 89 degrees. These results are in
reasonable agreement with previous measurements at lower energy. The 89 and 69
degree data show constituent-counting-rule behavior up to 4.0 GeV photon
energy. The 36 and 52 degree data disagree with the counting rule behavior. The
quantum chromodynamics (QCD) model of nuclear reactions involving reduced
amplitudes disagrees with the present data.Comment: 5 pages (REVTeX), 1 figure (postscript
Expression and Differential Responsiveness of Central Nervous System Glial Cell Populations to the Acute Phase Protein Serum Amyloid A
Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves hepatic production of acute-phase proteins, including serum amyloid A (SAA). Extrahepatically, SAA immunoreactivity is found in axonal myelin sheaths of cortex in Alzheimer's disease and multiple sclerosis (MS), although its cellular origin is unclear. We examined the responses of cultured rat cortical astrocytes, microglia and oligodendrocyte precursor cells (OPCs) to master pro-inflammatory cytokine tumour necrosis factor (TNF)-\u3b1 and lipopolysaccaride (LPS). TNF-\u3b1 time-dependently increased Saa1 (but not Saa3) mRNA expression in purified microglia, enriched astrocytes, and OPCs (as did LPS for microglia and astrocytes). Astrocytes depleted of microglia were markedly less responsive to TNF-\u3b1 and LPS, even after re-addition of microglia. Microglia and enriched astrocytes showed complementary Saa1 expression profiles following TNF-\u3b1 or LPS challenge, being higher in microglia with TNF-\u3b1 and higher in astrocytes with LPS. Recombinant human apo-SAA stimulated production of both inflammatory mediators and its own mRNA in microglia and enriched, but not microglia-depleted astrocytes. Co-ultramicronized palmitoylethanolamide/luteolin, an established anti-inflammatory/neuroprotective agent, reduced Saa1 expression in OPCs subjected to TNF-\u3b1 treatment. These last data, together with past findings suggest that co-ultramicronized palmitoylethanolamide/luteolin may be a novel approach in the treatment of inflammatory demyelinating disorders like MS
Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus)
<p>Abstract</p> <p>Background</p> <p>Hibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large scale genomic approaches. We analyzed gene expression in the American black bear, <it>Ursus americanus</it>, using a custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during winter hibernation in comparison to summer active animals.</p> <p>Results</p> <p>We identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver. These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein motif 3 (<it>Rbm3</it>), which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty acid β oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate catabolism, cellular respiration and detoxification pathways.</p> <p>Conclusions</p> <p>Our findings show that modulation of gene expression during winter hibernation represents molecular mechanism of adaptation to extreme environments.</p
Extensive Evolutionary Changes in Regulatory Element Activity during Human Origins Are Associated with Altered Gene Expression and Positive Selection
Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS) sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species
Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma
Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low µg/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma
Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.
Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
A comprehensive overview of radioguided surgery using gamma detection probe technology
The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology
- …