93 research outputs found
A pharmacological network for lifespan extension in Caenorhabditis elegans
One goal of aging research is to find drugs that delay the onset of age-associated disease. Studies in invertebrates, particularly Caenorhabditis elegans, have uncovered numerous genes involved in aging, many conserved in mammals. However, which of these encode proteins suitable for drug targeting is unknown. To investigate this question, we screened a library of compounds with known mammalian pharmacology for compounds that increase C. elegans lifespan. We identified 60 compounds that increase longevity in C. elegans, 33 of which also increased resistance to oxidative stress. Many of these compounds are drugs approved for human use. Enhanced resistance to oxidative stress was associated primarily with compounds that target receptors for biogenic amines, such as dopamine or serotonin. A pharmacological network constructed with these data reveal that lifespan extension and increased stress resistance cluster together in a few pharmacological classes, most involved in intercellular signaling. These studies identify compounds that can now be explored for beneficial effects on aging in mammals, as well as tools that can be used to further investigate the mechanisms underlying aging in C. elegans
Odor blocking of stress hormone responses
Scents have been employed for millennia to allay stress, but whether or how they might do so is largely unknown. Fear and stress induce increases in blood stress hormones controlled by hypothalamic corticotropin releasing hormone neurons (CRHNs). Here, we report that two common odorants block mouse stress hormone responses to three potent stressors: physical restraint, predator odor, and male-male social confrontation. One odorant inhibits restraint and predator odor activation of excitatory neurons upstream of CRHNs in the bed nucleus of the stria terminalis (BNSTa). In addition, both activate inhibitory neurons upstream of CRHNs in the hypothalamic ventromedial nucleus (VMH) and silencing of VMH inhibitory neurons hinders odor blocking of stress. Together, these findings indicate that odor blocking can occur via two mechanisms: (1) Inhibition of excitatory neurons that transmit stress signals to CRHNs and (2) activation of inhibitory neurons that act directly or indirectly to inhibit stressor activation of CRHNs
Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis
The sense of smell allows chemicals to be perceived as diverse scents. We used single neuron RNA-Sequencing (RNA-Seq) to explore developmental mechanisms that shape this ability as nasal olfactory neurons mature in mice. Most mature neurons expressed only one of the roughly 1000 odorant receptor genes (Olfrs) available, and that at high levels. However, many immature neurons expressed low levels of multiple Olfrs. Coexpressed Olfrs localized to overlapping zones of the nasal epithelium, suggesting regional biases, but not to single genomic loci. A single immature neuron could express Olfrs from up to seven different chromosomes. The mature state in which expression of Olfr genes is restricted to one per neuron emerges over a developmental progression that appears independent of neuronal activity requiring sensory transduction molecules
Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins
We report an advanced chemoenzymatic strategy for the direct fluorescence detection, proteomic analysis, and cellular imaging of O-GlcNAc-modified proteins. O-GlcNAc residues are selectively labeled with fluorescent or biotin tags using an engineered galactosyltransferase enzyme and [3 + 2] azide−alkyne cycloaddition chemistry. We demonstrate that this approach can be used for direct in-gel detection and mass spectrometric identification of O-GlcNAc proteins, identifying 146 novel glycoproteins from the mammalian brain. Furthermore, we show that the method can be exploited to quantify dynamic changes in cellular O-GlcNAc levels and to image O-GlcNAc-glycosylated proteins within cells. As such, this strategy enables studies of O-GlcNAc glycosylation that were previously inaccessible and provides a new tool for uncovering the physiological functions of O-GlcNAc
Abdominal aortic aneurysm repair with the Zenith stent graft: Short to midterm results
AbstractPurpose: The purpose of this study was to assess the short-term and mid-term results of endovascular aneurysm repair with the Zenith stent graft in a single-center prospective study. Method: Between October 1998 and July 2001, we used the Zenith stent graft for elective endovascular aneurysm repair in 116 patients, six of whom were women. The mean age was 75 years, and the mean aneurysm diameter was 60.3 ± 8.8 mm. Stent grafts were oversized 10% to 20% relative to computed tomographic (CT) scan-based diameter measurements. All repairs were performed in the operating room through surgically exposed femoral arteries. The results were assessed before discharge with three-phase, contrast-enhanced CT scan and plain abdominal radiograph. These studies were repeated at 1, 6, 12, and 24 months after operation. Follow-up periods ranged from 1 to 34 months. Results: No failed insertions and no conversions to open surgery occurred. The diameter of the main body of the stent graft was 28 mm or more in 73 patients (63%). Additional stents were inserted during surgery to treat kinking in eight patients (6.9%) and renal artery encroachment in two patients (1.7%). Mean fluoroscopy time was 35.1 ± 18.3 minutes, contrast load was 146 ± 53 mL (350 mg/mL), and estimated blood loss was 249 ± 407 mL. The major complication rate was 9.5%, and the minor complication rate was 10.3%. The perioperative complications were myocardial infarction in four patients, arrythmia in four patients, and pulmonary embolism, renal failure, stroke, small bowel obstruction, femoral stenosis, digital embolism, and graft limb thrombosis in one patient each. All 116 patients went home from the hospital, but one patient died 2 weeks later of a combination of pulmonary embolism and myocardial infarction. Endoleak was seen on the first CT scan in 16 patients (15%); 15 were type II, and one was type III. No endoleaks of type I or IV were seen. Additional interventions were performed for each of the following conditions: type II endoleak (n = 4), type III endoleak (n = 1), femoral clamp injury (n = 1), renal artery stenosis (n = 1), and graft limb occlusion (n = 1). One patient had acute aneurysm dilatation and rupture caused by a type II endoleak through the inferior mesenteric artery 6 months after stent graft implantation. No cases were seen of late graft occlusion, stent graft migration, stent fracture, barb fracture, or secondary endoleak. Conclusion: The Zenith device is safe, versatile, and effective in the short to medium term. Most patients need wide stent grafts (≥28 mm proximally and ≥16 mm distally) to achieve 10% to 20% oversizing to prevent type I endoleak. (J Vasc Surg 2002;36:217-25.
Persistent Lipophilic Environmental Chemicals and Endometriosis: The ENDO Study
Background: An equivocal literature exists regarding the relation between persistent organochlorine pollutants (POPs) and endometriosis in women, with differences attributed to methodologies
Toxicology evaluation of radiotracer doses of 3'-deoxy-3'-[18F]fluorothymidine (18F-FLT) for human PET imaging: Laboratory analysis of serial blood samples and comparison to previously investigated therapeutic FLT doses
Background: 18F-FLT is a novel PET radiotracer which has demonstrated a strong potential utility for imaging cellular proliferation in human tumors in vivo. To facilitate future regulatory approval
of 18F-FLT for clinical use, we wished to demonstrate the safety of radiotracer doses of 18F-FLT administered to human subjects, by: 1) performing an evaluation of the toxicity of 18F-FLT administered in radiotracer amounts for PET imaging, 2) comparing a radiotracer dose of FLT to
clinical trial doses of FLT.
Methods: Twenty patients gave consent to a 18F-FLT injection, subsequent PET imaging, and blood draws. For each patient, blood samples were collected at multiple times before and after 18F-FLT
PET. These samples were assayed for a comprehensive metabolic panel, total bilirubin, complete blood and platelet counts. 18F-FLT doses of 2.59 MBq/Kg with a maximal dose of 185 MBq (5 mCi)
were used. Blood time-activity curves were generated for each patient from dynamic PET data, providing a measure of the area under the FLT concentration curve for 12 hours (AUC12).
Results: No side effects were reported. Only albumin, red blood cell count, hematocrit and hemoglobin showed a statistically significant decrease over time. These changes are attributed to IV hydration during PET imaging and to subsequent blood loss at surgery. The AUC12 values estimated from imaging data are not significantly different from those found from serial measures of FLT blood concentrations (p = 0.66). The blood samples-derived AUC12 values range from 0.232 ng*h/mL to 1.339 ng*h/mL with a mean of 0.802 � 0.303 ng*h/mL. This corresponds to 0.46% to 2.68% of the lowest and least toxic clinical trial AUC12 of 50 ng*h/mL reported by Flexner et al
(1994). This single injection also corresponds to a nearly 3,000-fold lower cumulative dose than in Flexner's twice daily trial.
Conclusion: This study shows no evidence of toxicity or complications attributable to 18F-FLT injected intravenously.This study was supported by NIH grant R01 CA115559, 1R01 CA107264, and 1R01 CA80907
Appraisals, emotions and emotion regulation: An integrative approach
The present work aims to investigate the relation between appraisals, emotions, and emotion regulation strategies by creating a structural equation model which integrates these three aspects of the emotion process. To reach this aim, Italian students (N = 610) confronted with their high school diploma examination completed a questionnaire 3 weeks before the beginning of the exam. Results showed that they experienced primarily three types of emotions—anxiety/fear, frustration/powerlessness, positive emotions—which were related to specific appraisal profiles. Importantly, these appraisal profiles and emotions were associated with the use of different strategies for regulating emotions: anxiety/fear was associated with focusing on the exam, drug use, and an inability to distance oneself from the exam; frustration/powerlessness, with use of suppression, distancing, and drugs; positive emotion, with reappraisal and problem focused strategies. The effectiveness of these different strategies will be discussed
Challenges in Using Cultured Primary Rodent Hepatocytes or Cell Lines to Study Hepatic HDL Receptor SR-BI Regulation by Its Cytoplasmic Adaptor PDZK1
Background:
PDZK1 is a four PDZ-domain containing cytoplasmic protein that binds to a variety of membrane proteins via their C-termini and can influence the abundance, localization and/or function of its target proteins. One of these targets in hepatocytes in vivo is the HDL receptor SR-BI. Normal hepatic expression of SR-BI protein requires PDZK1 - <5% of normal hepatic SR-BI is seen in the livers of PDZK1 knockout mice. Progress has been made in identifying features of PDZK1 required to control hepatic SR-BI in vivo using hepatic expression of wild-type and mutant forms of PDZK1 in wild-type and PDZK1 KO transgenic mice. Such in vivo studies are time consuming and expensive, and cannot readily be used to explore many features of the underlying molecular and cellular mechanisms.
Methodology/Principal Findings:
Here we have explored the potential to use either primary rodent hepatocytes in culture using 2D collagen gels with newly developed optimized conditions or PDZK1/SR-BI co-transfected cultured cell lines (COS, HEK293) for such studies. SR-BI and PDZK1 protein and mRNA expression levels fell rapidly in primary hepatocyte cultures, indicating this system does not adequately mimic hepatocytes in vivo for analysis of the PDZK1 dependence of SR-BI. Although PDZK1 did alter SR-BI protein expression in the cell lines, its influence was independent of SR-BI’s C-terminus, and thus is not likely to occur via the same mechanism as that which occurs in hepatocytes in vivo.
Conclusions/Significance:
Caution must be exercised in using primary hepatocytes or cultured cell lines when studying the mechanism underlying the regulation of hepatic SR-BI by PDZK1. It may be possible to use SR-BI and PDZK1 expression as sensitive markers for the in vivo-like state of hepatocytes to further improve primary hepatocyte cell culture conditions.National Institutes of Health (U.S.) (Grant HL052212)National Institutes of Health (U.S.) (Grant HL066105)National Institutes of Health (U.S.) (Grant ES015241)National Institutes of Health (U.S.) (Grant GM068762
- …