43 research outputs found
Advances in the process-related understanding of atmosphere-cryosphere-hydrosphere couplings on the Tibetan Plateau
Abstract HKT-ISTP 2013
B
Evaluation of a distributed energy balance model for a high-altitude glacier on the Tibetan Plateau using glaciological measurements and a time-lapse camera system
Abstract HKT-ISTP 2013
B
Exploitation of TerraSAR-X Data for Land use/Land Cover Analysis Using Object-Oriented Classification Approach in the African Sahel Area, Sudan.
Recently, object-oriented classification techniques based on image segmentation approaches are being studied using high-resolution satellite images to extract various thematic information. In this study different types of land use/land cover (LULC) types were analysed by employing object-oriented classification approach to dual TerraSAR-X images (HH and HV polarisation) at African Sahel. For that purpose, multi-resolution segmentation (MRS) of the Definiens software was used for creating the image objects. Using the feature space optimisation (FSO) tool the attributes of the TerraSAR-X image were optimised in order to obtain the best separability among classes for the LULC mapping. The backscattering coefficients (BSC) for some classes were observed to be different for HH and HV polarisations. The best separation distance of the tested spectral, shape and textural features showed different variations among the discriminated LULC classes. An overall accuracy of 84 % with a kappa value 0.82 was resulted from the classification scheme, while accuracy differences among the classes were kept minimal. Finally, the results highlighted the importance of a combine use of TerraSAR-X data and object-oriented classification approaches as a useful source of information and technique for LULC analysis in the African Sahel drylands
Team b
Following the conceptual idea "from 3D camera to 3D view", the production of true-3D image maps for the glasses-free stereoviewing of parts of the Martian surface, is described. The image data have been acquired by the DLR High Resolution Stereo Camera (HRSC) as a part of the Mars Express Mission of ESA. This multi-line scanner delivers digital multispectral scanner data of highest quality in a fore, aft and nadir mode, thus offering a perfect data set for true-3D visualization. A true-colour image-line map in true-3D appears to cover both the requirements of the Mars research community and of the public best. In order to be able to view the map without viewing aids such as polarisation glasses the decision was made to generate it on the basis of lenticular lenses. The present paper demonstrates the workflow from the georeferenced image data set and the DTM to a true-3D visualization. The technology used is based on the principle of lenticular foils. Micro-lenses on a transparent plastic foil allow the map user to view the integral of two or more interlaced strips of stereo-mates through this foil with the left and right eye respectively. The calculation of both the strip width and the interlacing is done by means of commercially available software. Due to the interlacing of the sub-millimeter strips of the stereo-mates below each lenticular lens and the resulting decomposition in x-direction the integration of well-designed and easily legible signatures and letterings represent a challenge, both in terms of threedimensional modelling and cartographic elaboration. Tests and approaches to overcome various constraints in order to generat
Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery
Failures of glacial lake dams can cause outburst floods and represents a serious hazard. The potential danger of outburst floods depends on various factors like the lake's area and volume, glacier change, morphometry of the glacier and its surrounding moraines and valley, and glacier velocity. Remote sensing offers an efficient tool for displacement calculations and risk assessment of the identification of potentially dangerous glacial lakes (PDGLs) and is especially helpful for remote mountainous areas. Not all important parameters can, however, be obtained using spaceborne imagery. Additional interpretation by an expert is required. ASTER data has a suitable accuracy to calculate surface velocity. Ikonos data offers more detail but requires more effort for rectification. All investigated debris-covered glacier tongues show areas with no or very slow movement rates. From 1962 to 2003 the number and area of glacial lakes increased, dominated by the occurrence and almost linear areal expansion of the moraine-dammed lakes, like the Imja Lake. Although the Imja Lake will probably still grow in the near future, the risk of an outburst flood (GLOF) is considered not higher than for other glacial lakes in the area. Potentially dangerous lakes and areas of lake development are identified. There is a high probability of further lake development at Khumbu Glacier, but a low one at Lhotse Glacier
DETECTION OF OIL POLLUTION HOTSPOTS AND LEAK SOURCES THROUGH THE QUANTITATIVE ASSESSMENT OF THE PERSISTENCE AND TEMPORAL REPETITION OF REGULAR OIL SPILLS IN THE CASPIAN SEA USING REMOTE SENSING AND GIS
The main goal of this research was to detect oil spills, to determine the oil spill frequencies and to approximate oil leak sources
around the Oil Rocks Settlement, the Chilov and Pirallahi Islands in the Caspian Sea using 136 multi-temporal ENVISAT Advanced
Synthetic Aperture Radar Wide Swath Medium Resolution Images acquired during 2006-2010.
The following oil spill frequencies were observed around the Oil Rocks Settlement, the Chilov and Pirallahi Islands: 2-10 (3471.04
sq. km.), 11-20 (971.66 sq. km.), 21-50 (692.44 sq. km.), 51-128 (191.38 sq. km.). The most critical oil leak sources with the
frequency range of 41-128 were observed at the Oil Rocks Settlement. The exponential regression analysis between wind speeds and
oil slick areas detected from 136 multi-temporal ENVISAT images revealed the regression coefficient equal to 63%. The regression
model showed that larger oil spill areas were observed with decreasing wind speeds. The spatiotemporal patterns of currents in the
Caspian Sea explained the multi-directional spatial distribution of oil spills around Oil Rocks Settlement, the Chilov and Pirallahi
Islands. The linear regression analysis between detected oil spill frequencies and predicted oil contamination probability by the
stochastic model showed the positive trend with the regression coefficient of 30%
Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery
Failures of glacial lake dams can cause outburst floods and represents a serious hazard. The potential danger of outburst floods depends on various factors like the lake's area and volume, glacier change, morphometry of the glacier and its surrounding moraines and valley, and glacier velocity. Remote sensing offers an efficient tool for displacement calculations and risk assessment of the identification of potentially dangerous glacial lakes (PDGLs) and is especially helpful for remote mountainous areas. Not all important parameters can, however, be obtained using spaceborne imagery. Additional interpretation by an expert is required. ASTER data has a suitable accuracy to calculate surface velocity. Ikonos data offers more detail but requires more effort for rectification. All investigated debris-covered glacier tongues show areas with no or very slow movement rates. From 1962 to 2003 the number and area of glacial lakes increased, dominated by the occurrence and almost linear areal expansion of the moraine-dammed lakes, like the Imja Lake. Although the Imja Lake will probably still grow in the near future, the risk of an outburst flood (GLOF) is considered not higher than for other glacial lakes in the area. Potentially dangerous lakes and areas of lake development are identified. There is a high probability of further lake development at Khumbu Glacier, but a low one at Lhotse Glacier.</p