12 research outputs found
Synthèse d'oligomères et de polymères enrichis en porphyrines pour la conversion de l'énergie solaire
Le projet de cette thèse consistait à élaborer de nouveaux matériaux donneurs d’électrons pour les cellules solaires organiques. Cette technologie photovoltaïque émergente en plein essor a d’ores et déjà atteint la limite d’efficacité lui permettant d’être industrialisée et commercialisée à grande échelle. Le faible coût de production des dispositifs photovoltaïques organiques les rendent compétitives vis-à-vis des technologies inorganiques déjà bien implantées. Mais leur plus gros avantage est surement leur légèreté et leurs propriétés mécaniques qui les rendent très souples. Elles devraient donc certainement avoir un rôle majeur à jouer dans le futur en complément des cellules solaires classiques, avec une utilisation pour des applications spécifiques.
Nous avons ainsi développé des polymères en utilisant des chromophores réputés pour leurs propriétés photophysiques : les porphyrines, les BODIPY et les dicétopyrrolopyrroles. Ces différentes unités absorbent intensément la lumière, ce qui les rend adéquates pour être utilisées pour la conversion de l’énergie solaire en électricité. En concevant un design original et adapté à cette application, nous avons ainsi obtenu plusieurs nouveaux polymères prometteurs. Nous avons ensuite pu étudier leurs propriétés électrochimiques et électroniques, ainsi que leurs caractéristiques photophysiques. Pour cela nous avons utilisé de nombreux outils (caméra streak, absorption transitoire femtoseconde, etc.) afin de comprendre en détails leur propriétés d’absorption et de luminescence. Ces informations nous ont permis de pouvoir ensuite comprendre leur comportement une fois intégrés dans la couche active des dispositifs photovoltaïques. En effet, le mécanisme de fonctionnement pour la création d’un courant électrique met en jeu des transferts d’électrons ultrarapides (∼50 fs) vers un accepteur d’électron. Il est alors crucial de pouvoir comprendre et contrôler les paramètres pouvant influencer l’efficacité de ces transferts et la stabilisation des charges qui en résultent, pour pouvoir finalement mener à des rendements de conversion de l’énergie lumineuse élevés
Porphyrin Antenna-Enriched BODIPY–Thiophene Copolymer for Efficient Solar Cells
International audienceLow bandgap A−π–D copolymer, P(BdP-DEHT), consisting of alternating BOronDIPYrromethene (BODIPY) and thiophene units bridged by ethynyl linkers, and its porphyrin-enriched analogue, P(BdP/Por-DEHT), were prepared, and their optical and electrochemical properties were studied. P(BdP-DEHT) exhibits strong absorption in the 500–800 nm range with an optical bandgap of 1.74 eV. On the basis of cyclic voltammetry, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels are evaluated to be −5.40 and −3.66 eV, respectively. After the anchoring of zinc(II) porphyrin on the BODIPY unit, P(BdP/Por-DEHT) displays broadened absorption, thanks to porphyrins, and the optical bandgap decreases to 1.59 eV because of extension of BODIPY conjugation. The resulting estimated HOMO and LUMO energy levels, respectively, move to −5.32 and −3.73 eV. After optimization of the P(BdP-DEHT) or P(BdP/Por-DEHT) to PC71BM weight ratio to 1:2 in dichlorobenzene solution, the bulk heterojunction polymer solar cells show overall power conversion efficiencies (PCEs) of 3.03 and 3.86%, respectively. After solvent vapor annealing (SVA) treatment in CH2Cl2 for 40 s, the PCEs increased to 7.40% [Voc of 0.95 V, Jsc of 12.77 mA/cm2, and fill factor (FF) of 0.61 with energy loss of 0.79 eV] and 8.79% (Voc of 0.92 V, Jsc of 14.48 mA/cm2, and FF of 0.66 with energy loss of 0.67 eV). The increase in the PCE for P(BdP/Por-DEHT)-based devices is mainly attributed to the enhancement in Jsc and FF, which may be related to the broader absorption spectra, lower band gap, and better charge transport of P(BdP/Por-DEHT) compared to P(BdP-DEHT). This could also be related to the optimized nanoscale morphology of the active layer for both efficient exciton dissociation and charge transport toward the electrodes and a balanced charge transport in the device, induced by the SVA treatment of the active layer
Porphyrins and BODIPY as Building Blocks for Efficient Donor Materials in Bulk Heterojunction Solar Cells
International audienceAdvances in the synthesis and application of highly efficient polymers and small molecules over the last two decades have enabled the rapid advancement in the development of organic solar cells and photovoltaic technology as a promising alternative to conventional solar cells, based on silicon and other inorganic semiconducting materials. Among the different types of organic semiconducting materials, porphyrins and BODIPY-based small molecules and conjugated polymers attract high interest as efficient semiconducting organic materials for dye sensitized solar cells and bulk heterojunction organic solar cells. The highest power conversion efficiency exceeding 9% has been reported so far for porphyrin small molecules and 8.60% for conjugated polymers based on porphyrins. On the other hand, small molecules and conjugated polymers based on BODIPY moiety have been successfully used as donor materials for solution processed bulk heterojunction organic solar cells, and the resultant devices showed power conversion efficiencies exceeding 5.5%. In this article, the development of molecular design of porphyrins and BODIPY small molecules and polymers for bulk heterojunction organic solar cells are reviewed, and a guideline for the structure-performance relationship is provided
BODIPY–diketopyrrolopyrrole–porphyrin conjugate small molecules for use in bulk heterojunction solar cells
International audienc
Near-infrared emissive bacteriochlorin-diketopyrrolopyrrole triads: Synthesis and photophysical properties
International audienceThe synthesis of unprecedented energy transfer triads containing a near-infrared (NIR) emissive bacteriochlorin subunit and two diketopyrrolopyrrole (DPP) moieties linked to each other via ethynyl or zero-carbon spacers is presented. Their optical and fluorescence properties were determined in CHCl3 and toluene. These photophysical measurements highlight the ability of DPP scaffold to act as an effective energy donor, which once excited in the range 450-550 nm resulting nearly exclusively NIR emission of hydroporphyrin (ETE > 96%). Since DPP dyes are valuable structurally tunable fluorophores that may be used in the construction of high-performance multicomponent photoactive systems, their spectral compatibility with bacteriochlorin chromophore demonstrated through this work, is an important first step toward the rational design of novel and innovative hybrid NIR fluorophores inspired by (bacterio)chlorophylls and suitable for biomedical applications
Random Structural Modification of a Low-Band-Gap BODIPY-Based Polymer
International audienceA BODIPY thiophene polymer modified by extending conjugation of the BODIPY chromophore is reported. This modification induces tunability of energy levels and therefore absorption wavelengths in order to target lower energies
A Very Low Band Gap Diketopyrrolopyrrole-Porphyrin Conjugated Polymer
International audienceA porphyrin-diketopyrrolopyrrole-containing polymer (poly(porphyrin-diketopyrrolopyrrole) (PPDPP)) shows impressive molar absorption coefficients from lambda=300 to 1000 nm. The photophysical and structural properties of PPDPP have been studied. With PPDPP as the electron donor and [ 6,6]phenyl C-71 butyric acid methyl ester (PC71BM) as the electron acceptor, the bulk heterojunction polymer solar cell showed overall power conversion efficiencies of 4.18 and 6.44% for as-cast and two-step annealing processed PPDPP: PC71BM (1: 2) active layers, respectively. These results are quite impressive for porphyrin-containing polymers, especially when directly included in the pi-conjugated backbone, and offer interesting perspectives for the design of new materials based on this chromophore
Recommended from our members
Cyclotriveratrylene-Containing Porphyrins
The C-3-symmetric cyclotriveratrylene (CTV) was covalently bonded via click chemistry to 1, 2, 3, and 6 zinc(II) porphyrin units to various host for C-60. The binding constants, Ka, were measured from the quenching of the porphyrin fluorescence by C-60. These constants vary between 400 and 4000 M-1 and are considered weak. Computer modeling demonstrated that the zinc(II) porphyrin units, [Zn], exhibit a strong tendency to occupy the CTV cavity, hence blocking the access for C-60 to land on this site. Instead, the pincer of the type [Zn]-[Zn] and in one case [Zn]-CTV, were found to be the most probable geometry to promote host-guest associations in these systems
Cyclotriveratrylene-Containing Porphyrins
International audienceThe C-3-symmetric cyclotriveratrylene (CTV) was covalently bonded via click chemistry to 1, 2, 3, and 6 zinc(II) porphyrin units to various host for C-60. The binding constants, Ka, were measured from the quenching of the porphyrin fluorescence by C-60. These constants vary between 400 and 4000 M-1 and are considered weak. Computer modeling demonstrated that the zinc(II) porphyrin units, [Zn], exhibit a strong tendency to occupy the CTV cavity, hence blocking the access for C-60 to land on this site. Instead, the pincer of the type [Zn]-[Zn] and in one case [Zn]-CTV, were found to be the most probable geometry to promote host-guest associations in these systems