56 research outputs found

    Design of a randomized controlled double-blind crossover clinical trial to assess the effects of saliva substitutes on bovine enamel and dentin in situ

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyposalivation is caused by various syndromes, diabetes, drugs, inflammation, infection, or radiotherapy of the salivary glands. Patients with hyposalivation often show an increased caries incidence. Moreover, hyposalivation is frequently accompanied by oral discomfort and impaired oral functions, and saliva substitutes are widely used to alleviate oral symptoms. However, preference of saliva substitutes due to taste, handling, and relief of oral symptoms has been discussed controversially. Some of the marketed products have shown demineralizing effects on dental hard tissues <it>in vitro</it>. This demineralizing potential is attributed to the undersaturation with respect to calcium phosphates. Therefore, it is important to modify the mineralizing potential of saliva substitutes to prevent carious lesions. Thus, the aim of the present study was to evaluate the effects of a possible remineralizing saliva substitute (SN; modified Saliva natura) compared to a demineralizing one (G; Glandosane) on mineral parameters of sound bovine dentin and enamel as well as on artificially demineralized enamel specimens <it>in situ</it>. Moreover, oral well-being after use of each saliva substitute was recorded.</p> <p>Methods/Design</p> <p>Using a randomized, double-blind, crossover, phase II/III <it>in situ </it>trial, volunteers with hyposalivation utilize removable dentures containing bovine specimens during the experimental period. The volunteers are divided into two groups, and are required to apply both saliva substitutes for seven weeks each. After both test periods, differences in mineral loss and lesion depth between values before and after exposure are evaluated based on microradiographs. The oral well-being of the volunteers before and after therapy is determined using questionnaires. With respect to the microradiographic analysis, equal mineral losses and lesion depths of enamel and dentin specimens during treatment with SN and G, and no differences in patients' experienced oral comfort after SN compared to G usage are expected (H<sub>0</sub>).</p> <p>Discussion</p> <p>Up to now, 14 patients have been included in the study, and no reasons for early termination of the trial have been identified. The design seems suitable for determining the effects of saliva substitutes on dental hard tissues <it>in situ</it>, and should provide detailed information on the oral well-being after use of different saliva substitutes in patients with hyposalivation.</p> <p>Trial registration</p> <p><b>ClinicalTrials.gov ID. </b><a href="http://www.clinicaltrials.gov/ct2/show/NCT01165970">NCT01165970</a></p

    Factorization at Subleading Power and Irreducible Uncertainties in BˉXsγ\bar B\to X_s\gamma Decay

    Full text link
    Using methods from soft-collinear and heavy-quark effective theory, a systematic factorization analysis is performed for the BˉXsγ\bar B\to X_s\gamma photon spectrum in the endpoint region mb2Eγ=O(ΛQCD)m_b-2E_\gamma={\cal O}(\Lambda_{\rm QCD}). It is proposed that, to all orders in 1/mb1/m_b, the spectrum obeys a novel factorization formula, which besides terms with the structure HJSH\,J\otimes S familiar from inclusive BˉXulνˉ\bar B\to X_u l\,\bar\nu decay distributions contains "resolved photon" contributions of the form HJSJˉH\,J\otimes S\otimes\bar J and HJSJˉJˉH\,J\otimes S\otimes\bar J\otimes\bar J. Here SS and Jˉ\bar J are new soft and jet functions, whose form is derived. These contributions arise whenever the photon couples to light partons instead of coupling directly to the effective weak interaction. The new contributions appear first at order 1/mb1/m_b and are related to operators other than Q7γQ_{7\gamma} in the effective weak Hamiltonian. They give rise to non-vanishing 1/mb1/m_b corrections to the total decay rate, which cannot be described using a local operator product expansion. A systematic analysis of these effects is performed at tree level in hard and hard-collinear interactions. The resulting uncertainty on the decay rate defined with a cut Eγ>1.6E_\gamma>1.6 GeV is estimated to be approximately ±5\pm 5%. It could be reduced by an improved measurement of the isospin asymmetry Δ0\Delta_{0-} to the level of ±4\pm 4%. We see no possibility to reduce this uncertainty further using reliable theoretical methods.Comment: 63 pages, 11 Figures, Journal Versio
    corecore