30 research outputs found

    Design of a randomized, placebo-controlled, Phase 3 trial of tofersen initiated in clinically presymptomatic SOD1 variant carriers: The ATLAS study

    Get PDF
    Despite extensive research, amyotrophic lateral sclerosis (ALS) remains a progressive and invariably fatal neurodegenerative disease. Limited knowledge of the underlying causes of ALS has made it difficult to target upstream biological mechanisms of disease, and therapeutic interventions are usually administered relatively late in the course of disease. Genetic forms of ALS offer a unique opportunity for therapeutic development, as genetic associations may reveal potential insights into disease etiology. Genetic ALS may also be amenable to investigating earlier intervention given the possibility of identifying clinically presymptomatic, at-risk individuals with causative genetic variants. There is increasing evidence for a presymptomatic phase of ALS, with biomarker data from the Pre-Symptomatic Familial ALS (Pre-fALS) study showing that an elevation in blood neurofilament light chain (NfL) precedes phenoconversion to clinically manifest disease. Tofersen is an investigational antisense oligonucleotide designed to reduce synthesis of superoxide dismutase 1 (SOD1) protein through degradation of SOD1 mRNA. Informed by Pre-fALS and the tofersen clinical development program, the ATLAS study (NCT04856982) is designed to evaluate the impact of initiating tofersen in presymptomatic carriers of SOD1 variants associated with high or complete penetrance and rapid disease progression who also have biomarker evidence of disease activity (elevated plasma NfL). The ATLAS study will investigate whether tofersen can delay the emergence of clinically manifest ALS. To our knowledge, ATLAS is the first interventional trial in presymptomatic ALS and has the potential to yield important insights into the design and conduct of presymptomatic trials, identification, and monitoring of at-risk individuals, and future treatment paradigms in ALS

    Prevalence of surgical procedures at symptomatic onset of prion disease

    Get PDF
    This case-control study examines the frequency of invasive procedures at the onset of prion disease symptoms to determine the scope of the risk of contamination to future patients

    Criteria for reducing unnecessary testing for herpes simplex virus, varicella-zoster virus, cytomegalovirus, and enterovirus in cerebrospinal fluid samples from adults

    Get PDF
    Excessive utilization of laboratory diagnostic testing leads to increased health care costs. We evaluated criteria to reduce unnecessary nucleic acid amplification testing (NAAT) for viral pathogens in cerebrospinal fluid (CSF) samples from adults. This is a single-center split retrospective observational study with a screening cohort from 2008 to 2012 and a validation cohort from 2013. Adults with available results for herpes simplex virus 1/2 (HSV-1/2), varicella-zoster virus (VZV), cytomegalovirus (CMV), or enterovirus (EV) NAAT with CSF samples between 2008 and 2013 were included (n = 10,917). During this study, 1.3% (n = 140) of viral NAAT studies yielded positive results. The acceptance criteria of >10 nucleated cells/μl in the CSF of immunocompetent subjects would have reduced HSV-1/2, VZV, CMV, and EV testing by 63%, 50%, 44%, and 51%, respectively, from 2008 to 2012. When these criteria were applied to the 2013 validation data set, 54% of HSV-1/2, 57% of VZV, 35% of CMV, and 56% of EV tests would have been cancelled. No clinically significant positive tests would have been cancelled in 2013 with this approach. The introduction of a computerized order entry set was associated with increased test requests, suggesting that computerized order sets may contribute to unnecessary testing. Acceptance criteria of >10 nucleated cells/μl in the CSF of immunocompetent adults for viral CSF NAAT assays would increase clinical specificity and preserve sensitivity, resulting in significant cost savings. Implementation of these acceptance criteria led to a 46% reduction in testing during a limited follow-up period

    Flortaucipir (tau) PET in LGI1 antibody encephalitis

    Get PDF
    The contributors to persistent cognitive impairment and hippocampal atrophy in leucine-rich glioma-inactivated 1 antibody encephalitis (LGI1) patients are unknown. We evaluated whether tau neuropathology measured with

    Whole-genome and long-read sequencing identify a novel mechanism in RFC1 resulting in CANVAS syndrome

    Get PDF
    OBJECTIVES: Cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS) results from biallelic intronic pentanucleotide repeats in METHODS: We performed whole-genome sequencing (WGS) on peripheral blood DNA samples from the proband and his unaffected mother. We performed DNA long-read sequencing and synthesized complementary DNA from RNA using peripheral blood from the proband. RESULTS: WGS confirmed the maternally inherited DISCUSSION: We report an adult with CANVAS due to compound heterozygous pathogeni

    Clinical utility of anti-cytosolic 5\u27-nucleotidase 1A antibody in idiopathic inflammatory myopathies

    Get PDF
    OBJECTIVE: To define the clinicopathologic features and diagnostic utility associated with anti-cytosolic 5\u27-nucleotidase 1A (NT5C1A) antibody seropositivity in idiopathic inflammatory myopathies (IIMs). METHODS: Anti-NT5C1A antibody status was clinically tested between 2014 and 2019 in the Washington University neuromuscular clinical laboratory. Using clinicopathologic information available for 593 patients, we classified them as inclusion body myositis (IBM), dermatomyositis, antisynthetase syndrome, immune-mediated necrotizing myopathy (IMNM), nonspecific myositis, or noninflammatory muscle diseases. RESULTS: Of 593 patients, anti-NT5C1A antibody was found in 159/249 (64%) IBM, 11/53 (21%) dermatomyositis, 7/27 (26%) antisynthetase syndrome, 9/76 (12%) IMNM, 20/84 (24%) nonspecific myositis, and 6/104 (6%) noninflammatory muscle diseases patients. Among patients with IBM, anti-NT5C1A antibody seropositive patients had more cytochrome oxidase-negative fibers compared with anti-NT5C1A antibody seronegative patients. Among 14 IBM patients initially negative for anti-NT5C1A antibody, three patients (21%) converted to positive. Anti-NT5C1A antibody seropositivity did not correlate with malignancy, interstitial lung disease, response to treatments in dermatomyositis, antisynthetase syndrome, and IMNM, or survival in IIMs. INTERPRETATION: Anti-NT5C1A antibody is associated with IBM. However, the seropositivity can also be seen in non-IBM IIMs and it does not correlate with any prognostic factors or survival

    Protein kinetics of superoxide dismutase-1 in familial and sporadic amyotrophic lateral sclerosis

    Get PDF
    OBJECTIVE: Accumulation of misfolded superoxide dismutase-1 (SOD1) is a pathological hallmark of SOD1-related amyotrophic lateral sclerosis (ALS) and is observed in sporadic ALS where its role in pathogenesis is controversial. Understanding in vivo protein kinetics may clarify how SOD1 influences neurodegeneration and inform optimal dosing for therapies that lower SOD1 transcripts. METHODS: We employed stable isotope labeling paired with mass spectrometry to evaluate in vivo protein kinetics and concentration of soluble SOD1 in cerebrospinal fluid (CSF) of SOD1 mutation carriers, sporadic ALS participants and controls. A deaminated SOD1 peptide, SDGPVKV, that correlates with protein stability was also measured. RESULTS: In participants with heterozygous SOD1 INTERPRETATION: These results highlight the ability of stable isotope labeling approaches and peptide deamidation to discern the influence of disease mutations on protein kinetics and stability and support implementation of this method to optimize clinical trial design of gene and molecular therapies for neurological disorders. TRIAL REGISTRATION: Clinicaltrials.gov: NCT03449212
    corecore