22 research outputs found

    Exact matrix product decay modes of a boundary driven cellular automaton

    No full text
    We study integrability properties of a reversible deterministic cellular automaton (Rule 54 of (Bobenko et al 1993 Commun. Math. Phys. 158 127)) and present a bulk algebraic relation and its inhomogeneous extension which allow for an explicit construction of Liouvillian decay modes for two distinct families of stochastic boundary driving. The spectrum of the many-body stochastic matrix defining the time propagation is found to separate into sets, which we call orbitals, and the eigenvalues in each orbital are found to obey a distinct set of Bethe-like equations. We construct the decay modes in the first orbital (containing the leading decay mode) in terms of an exact inhomogeneous matrix product ansatz, study the thermodynamic properties of the spectrum and the scaling of its gap, and provide a conjecture for the Bethe-like equations for all the orbitals and their degeneracy

    Complex coherent quantum many-body dynamics through dissipation

    No full text
    The assumption that physical systems relax to a stationary state in the long-time limit underpins statistical physics and much of our intuitive understanding of scientific phenomena. For isolated systems this follows from the eigenstate thermalization hypothesis. When an environment is present the expectation is that all of phase space is explored, eventually leading to stationarity. Notable exceptions are decoherence-free subspaces that have important implications for quantum technologies. These have been studied for systems with a few degrees of freedom only. Here we identify simple and generic conditions for dissipation to prevent a quantum many-body system from ever reaching a stationary state. We go beyond dissipative quantum state engineering approaches towards controllable long-time non-stationary dynamics typically associated with macroscopic complex systems. This coherent and oscillatory evolution constitutes a dissipative version of a quantum time-crystal. We discuss the possibility of engineering such complex dynamics with fermionic ultracold atoms in optical lattices

    Rule 54: exactly solvable model of nonequilibrium statistical mechanics

    No full text
    We review recent results on an exactly solvable model of nonequilibrium statistical mechanics, specifically the classical rule 54 reversible cellular automaton and some of its quantum extensions. We discuss the exact microscopic description of nonequilibrium dynamics as well as the equilibrium and nonequilibrium stationary states. This allows us to obtain a rigorous handle on the corresponding emergent hydrodynamic description, which is treated as well. Specifically, we focus on two different paradigms of rule 54 dynamics. Firstly, we consider a finite chain driven by stochastic boundaries, where we provide exact matrix product descriptions of the nonequilibrium steady state, most relevant decay modes, as well as the eigenvector of the tilted Markov chain yielding exact large deviations for a broad class of local and extensive observables. Secondly, we treat the explicit dynamics of macro-states on an infinite lattice and discuss exact closed form results for dynamical structure factor, multi-time-correlation functions and inhomogeneous quenches. Remarkably, these results prove that the model, despite its simplicity, behaves like a regular fluid with coexistence of ballistic (sound) and diffusive (heat) transport. Finally, we briefly discuss quantum interpretation of rule 54 dynamics and explicit results on dynamical spreading of local operators and operator entanglement

    Heating-Induced Long-Range η Pairing in the Hubbard Model

    No full text
    We show how, upon heating the spin degrees of freedom of the Hubbard model to infinite temperature, the symmetries of the system allow the creation of steady states with long-range correlations between η pairs. We induce this heating with either dissipation or periodic driving and evolve the system towards a nonequilibrium steady state, a process which melts all spin order in the system. The steady state is identical in both cases and displays distance-invariant off-diagonal η correlations. These correlations were first recognized in the superconducting eigenstates described in Yang’s seminal Letter [Phys. Rev. Lett. 63, 2144 (1989)], which are a subset of our steady states. We show that our results are a consequence of symmetry properties and entirely independent of the microscopic details of the model and the heating mechanism

    Heating-Induced Long-Range η Pairing in the Hubbard Model

    No full text
    We show how, upon heating the spin degrees of freedom of the Hubbard model to infinite temperature, the symmetries of the system allow the creation of steady states with long-range correlations between η pairs. We induce this heating with either dissipation or periodic driving and evolve the system towards a nonequilibrium steady state, a process which melts all spin order in the system. The steady state is identical in both cases and displays distance-invariant off-diagonal η correlations. These correlations were first recognized in the superconducting eigenstates described in Yang’s seminal Letter [Phys. Rev. Lett. 63, 2144 (1989)], which are a subset of our steady states. We show that our results are a consequence of symmetry properties and entirely independent of the microscopic details of the model and the heating mechanism

    Symmetries and conservation laws in quantum trajectories: Dissipative freezing

    No full text
    In driven-dissipative systems, the presence of a strong symmetry guarantees the existence of several steady states belonging to different symmetry sectors. Here we show that, when a system with a strong symmetry is initialized in a quantum superposition involving several of these sectors, each individual stochastic trajectory will randomly select a single one of them and remain there for the rest of the evolution. Since a strong symmetry implies a conservation law for the corresponding symmetry operator on the ensemble level, this selection of a single sector from an initial superposition entails a breakdown of this conservation law at the level of individual realizations. Given that such a superposition is impossible in a classical, stochastic trajectory, this is a a purely quantum effect with no classical analogue. Our results show that a system with a closed Liouvillian gap may exhibit, when monitored over a single run of an experiment, a behaviour completely opposite to the usual notion of dynamical phase coexistence and intermittency, which are typically considered hallmarks of a dissipative phase transition. We discuss our results with a simple, realistic model of squeezed superradiance

    Heating-Induced Long-Range η

    No full text
    corecore