575 research outputs found
A review on photoelectrochemical cathodic protection semiconductor thin films for metals
Photoelectrochemical (PEC) cathodic protection is considered as an environment friendly method for metals anticorrosion. In this technology, a n-type semiconductor photoanode provides the photogenerated electrons for metal to achieve cathodic protection. Comparing with traditional PEC photoanode for water splitting, it requires the photoanode providing a suitable cathodic potential for the metal, instead of pursuit ultimate photon to electric conversion efficiency, thus it is a more possible PEC technology for engineering application. To date, great efforts have been devoted to developing novel n-type semiconductors and advanced modification method to improve the performance on PEC cathodic protection metals. Herein, recent progresses in this field are summarized. We highlight the fabrication process of PEC cathodic protection thin film, various nanostructure controlling, doping, compositing methods and their operation mechanism. Finally, the current challenges and future potential works on improving the PEC cathodic protection performance are discussed
N′-(Butan-2-ylidene)furan-2-carbohydrazide
The title Schiff base compound, C9H12N2O2, was obtained from a condensation reaction of butan-2-one and furan-2-carbohydrazide. The furan ring and the hydrazide fragment are roughly planar, the largest deviation from the mean plane being 0.069 (2)Å, but the butanylidene group is twisted slightly with respect to this plane by a dihedral angle of 5.2 (3)°. In the crystal, intermolecular N—H⋯O hydrogen bonds link pairs of inversion-related molecules, forming dimers of R
2
2(8) graph-set motif
Use of low-dose computed tomography to assess pulmonary tuberculosis among healthcare workers in a tuberculosis hospital
BACKGROUND: According to the World Health Organization, China is one of 22 countries with serious tuberculosis (TB) infections and one of the 27 countries with serious multidrug-resistant TB strains. Despite the decline of tuberculosis in the overall population, healthcare workers (HCWs) are still at a high risk of infection. Compared with high-income countries, the TB prevalence among HCWs is higher in low- and middle-income countries. Low-dose computed tomography (LDCT) is becoming more popular due to its superior sensitivity and lower radiation dose. However, there have been no reports about active pulmonary tuberculosis (PTB) among HCWs as assessed with LDCT. The purposes of this study were to examine PTB statuses in HCWs in hospitals specializing in TB treatment and explore the significance of the application of LDCT to these workers. METHODS: This study retrospectively analysed the physical examination data of healthcare workers in the Beijing Chest Hospital from September 2012 to December 2015. Low-dose lung CT examinations were performed in all cases. The comparisons between active and inactive PTB according to the CT findings were made using the Pearson chi-square test or the Fisher’s exact test. Comparisons between the incidences of active PTB in high-risk areas and non-high-risk areas were performed using the Pearson chi-square test. Analyses of active PTB were performed according to different ages, numbers of years on the job, and the risks of the working areas. Active PTB as diagnosed by the LDCT examinations alone was compared with the final comprehensive diagnoses, and the sensitivity and positive predictive value were calculated. RESULTS: A total of 1 012 participants were included in this study. During the 4-year period of medical examinations, active PTB was found in 19 cases, and inactive PTB was found in 109 cases. The prevalence of active PTB in the participants was 1.24%, 0.67%, 0.81%, and 0.53% for years 2012 to 2015. The corresponding incidences of active PTB among the tuberculosis hospital participants were 0.86%, 0.41%, 0.54%, and 0.26%. Most HCWs with active TB (78.9%, 15/19) worked in the high-risk areas of the hospital. There was a significant difference in the incidences of active PTB between the HCWs who worked in the high-risk and non-high-risk areas (odds ratio [OR], 14.415; 95% confidence interval (CI): 4.733 – 43.896). Comparisons of the CT signs between the active and inactive groups via chi-square tests revealed that the tree-in-bud, cavity, fibrous shadow, and calcification signs exhibited significant differences (P = 0.000, 0.021, 0.001, and 0.024, respectively). Tree-in-bud and cavity opacities suggest active pulmonary tuberculosis, whereas fibrous shadow and calcification opacities are the main features of inactive pulmonary tuberculosis. Comparison with the final comprehensive diagnoses revealed that the sensitivity and positive predictive value of the diagnoses of active PTB based on LDCT alone were 100% and 86.4%, respectively. CONCLUSIONS: Healthcare workers in tuberculosis hospitals are a high-risk group for active PTB. Yearly LDCT examinations of such high-risk groups are feasible and necessary. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40249-017-0274-6) contains supplementary material, which is available to authorized users
Fabrication of CuOx thin-film photocathodes by magnetron reactive sputtering for photoelectrochemical water reduction
The CuOx thin film photocathodes were deposited on F-doped SnO2 (FTO) transparent conducting glasses by alternating current (AC) magnetron reactive sputtering under different Ar:O2 ratios. The advantage of this deposited method is that it can deposit a CuOx thin film uniformly and rapidly with large scale. From the photoelectrochemical (PEC) properties of these CuOx photocathodes, it can be found that the CuOx photocathode with Ar/O2 30:7 provide a photocurrent density of −3.2 mA cm−2 under a bias potential −0.5 V (vs. Ag/AgCl), which was found to be twice higher than that of Ar/O2 with 30:5. A detailed characterization on the structure, morphology and electrochemical properties of these CuOx thin film photocathodes was carried out, and it is found that the improved PEC performance of CuOx semiconductor photocathode with Ar/O2 30:7 attributed to the less defects in it, indicating that this Ar/O2 30:7 is an optimized condition for excellent CuOx semiconductor photocathode fabrication
Entanglement for a Bimodal Cavity Field Interacting with a Two-Level Atom
Negativity has been adopted to investigate the entanglement in a system
composed of a two-level atom and a two-mode cavity field. Effects of Kerr-like
medium and the number of photon inside the cavity on the entanglement are
studied. Our results show that atomic initial state must be superposed, so that
the two cavity field modes can be entangled. Moreover, we also conclude that
the number of photon in the two cavity mode should be equal. The interaction
between modes, namely, the Kerr effect, has a significant negative
contribution. Note that the atom frequency and the cavity frequency have an
indistinguishable effect, so a corresponding approximation has been made in
this article. These results may be useful for quantum information in optics
systems.Comment: Accepted by Commun. Theor. Phy
- …