2 research outputs found

    Deep Reinforcement Learning-driven Cross-Community Energy Interaction Optimal Scheduling

    Full text link
    In order to coordinate energy interactions among various communities and energy conversions among multi-energy subsystems within the multi-community integrated energy system under uncertain conditions, and achieve overall optimization and scheduling of the comprehensive energy system, this paper proposes a comprehensive scheduling model that utilizes a multi-agent deep reinforcement learning algorithm to learn load characteristics of different communities and make decisions based on this knowledge. In this model, the scheduling problem of the integrated energy system is transformed into a Markov decision process and solved using a data-driven deep reinforcement learning algorithm, which avoids the need for modeling complex energy coupling relationships between multi-communities and multi-energy subsystems. The simulation results show that the proposed method effectively captures the load characteristics of different communities and utilizes their complementary features to coordinate reasonable energy interactions among them. This leads to a reduction in wind curtailment rate from 16.3% to 0% and lowers the overall operating cost by 5445.6 Yuan, demonstrating significant economic and environmental benefits.Comment: in Chinese language, Accepted by Electric Power Constructio

    Optimal scheduling of island integrated energy systems considering multi-uncertainties and hydrothermal simultaneous transmission: a deep reinforcement learning approach

    No full text
    Multi-uncertainties from power sources and loads have brought significant challenges to the stable demand supply of various resources at islands. To address these challenges, a comprehensive scheduling framework is proposed by introducing a model-free deep reinforcement learning (DRL) approach based on modeling an island integrated energy system (IES). In response to the shortage of freshwater on islands, in addition to the introduction of seawater desalination systems, a transmission structure of “hydrothermal simultaneous transmission” (HST) is proposed. The essence of the IES scheduling problem is the optimal combination of each unit’s output, which is a typical timing control problem and conforms to the Markov decision-making solution framework of deep reinforcement learning. Deep reinforcement learning adapts to various changes and timely adjusts strategies through the interaction of agents and the environment, avoiding complicated modeling and prediction of multi-uncertainties. The simulation results show that the proposed scheduling framework properly handles multi-uncertainties from power sources and loads, achieves a stable demand supply for various resources, and has better performance than other real-time scheduling methods, especially in terms of computational efficiency. In addition, the HST model constitutes an active exploration to improve the utilization efficiency of island freshwater
    corecore