30 research outputs found

    Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: a meta-analysis

    Get PDF
    Background: Prostate-specific antigen (PSA) screening has low specificity. Assessment of methylation status in body fluids may complement PSA screening if the test has high specificity. Method: The purpose of this study was to conduct a meta-analysis of the sensitivity and specificity for prostate cancer detection of glutathione-s-transferase–π (GSTP1) methylation in body fluids (plasma, serum, whole blood, urine, ejaculate, and prostatic secretions). We conducted a comprehensive literature search on Medline (Pubmed). We included studies if they met all four of the following criteria: (1) measurement of DNA methylation in body fluids; (2) a case-control or case-only design; (3) publication in an English journal; and (4) adult subjects. Reviewers conducted data extraction independently using a standardised protocol. Twenty-two studies were finally included in this paper. Primer sequences and methylation method in each study were summarised and evaluated using meta-analyses. This paper represents a unique cross-disciplinary approach to molecular epidemiology. Results: The pooled specificity of GSTP1 promoter methylation measured in plasma, serum, and urine samples from negative-biopsy controls was 0.89 (95% CI, 0.80–0.95). Stratified analyses consistently showed a high specificity across different sample types and methylation methods (include both primer sequences and location). The pooled sensitivity was 0.52 (95% CI, 0.40–0.64). Conclusions: The pooled specificity of GSTP1 promoter methylation measures in plasma, serum, and urine was excellent and much higher than the specificity of PSA. The sensitivity of GSTP1 was modest, no higher than that of PSA. These results suggest that measurement of GSTP1 promoter methylation in plasma, serum, or urine samples may complement PSA screening for prostate cancer diagnosis

    Implications of Storing Urinary DNA from Different Populations for Molecular Analyses

    Get PDF
    Molecular diagnosis using urine is established for many sexually transmitted diseases and is increasingly used to diagnose tumours and other infectious diseases. Storage of urine prior to analysis, whether due to home collection or bio-banking, is increasingly advocated yet no best practice has emerged. Here, we examined the stability of DNA in stored urine in two populations over 28 days.Urine from 40 (20 male) healthy volunteers from two populations, Italy and Zambia, was stored at four different temperatures (RT, 4 degrees C, -20 degrees C & -80 degrees C) with and without EDTA preservative solution. Urines were extracted at days 0, 1, 3, 7 and 28 after storage. Human DNA content was measured using multi-copy (ALU J) and single copy (TLR2) targets by quantitative real-time PCR. Zambian and Italian samples contained comparable DNA quantity at time zero. Generally, two trends were observed during storage; no degradation, or rapid degradation from days 0 to 7 followed by little further degradation to 28 days. The biphasic degradation was always observed in Zambia regardless of storage conditions, but only twice in Italy.Site-specific differences in urine composition significantly affect the stability of DNA during storage. Assessing the quality of stored urine for molecular analysis, by using the type of strategy described here, is paramount before these samples are used for molecular prognostic monitoring, genetic analyses and disease diagnosis

    Discovery of Novel Hypermethylated Genes in Prostate Cancer Using Genomic CpG Island Microarrays

    Get PDF
    BACKGROUND: Promoter and 5' end methylation regulation of tumour suppressor genes is a common feature of many cancers. Such occurrences often lead to the silencing of these key genes and thus they may contribute to the development of cancer, including prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: In order to identify methylation changes in prostate cancer, we performed a genome-wide analysis of DNA methylation using Agilent human CpG island arrays. Using computational and gene-specific validation approaches we have identified a large number of potential epigenetic biomarkers of prostate cancer. Further validation of candidate genes on a separate cohort of low and high grade prostate cancers by quantitative MethyLight analysis has allowed us to confirm DNA hypermethylation of HOXD3 and BMP7, two genes that may play a role in the development of high grade tumours. We also show that promoter hypermethylation is responsible for downregulated expression of these genes in the DU-145 PCa cell line. CONCLUSIONS/SIGNIFICANCE: This study identifies novel epigenetic biomarkers of prostate cancer and prostate cancer progression, and provides a global assessment of DNA methylation in prostate cancer

    Salivary Markers for Oral Cancer Detection

    Get PDF
    Oral cancer refers to all malignancies that arise in the oral cavity, lips and pharynx, with 90% of all oral cancers being oral squamous cell carcinoma. Despite the recent treatment advances, oral cancer is reported as having one of the highest mortality ratios amongst other malignancies and this can much be attributed to the late diagnosis of the disease. Saliva has long been tested as a valuable tool for drug monitoring and the diagnosis systemic diseases among which oral cancer. The new emerging technologies in molecular biology have enabled the discovery of new molecular markers (DNA, RNA and protein markers) for oral cancer diagnosis and surveillance which are discussed in the current review

    Urinary Cell-Free DNA: Potential and Applications

    No full text
    Urine could be a convenient source of biomarkers for different diseases and clinical applications, mostly for cancer diagnosis, prognosis, treatment monitoring, and prenatal diagnosis. The ultra-noninvasive sampling and the possibility to analyze large volume are the main undisputed advantages of urine-based protocols. Recent and comprehensive studies showed that urinary cell-free DNA (ucfDNA) is informative to identify the genomic signature of patients, resulting in a huge tool to track the tumor evolution and for personalized medicine in urological and non-urological cancer.In this chapter, we reported the main published evidences on ucfDNA, with the aim at discussing its promising and translatable role in clinical practices
    corecore