64 research outputs found

    A Multilevel Computational Characterization of Endophenotypes in Addiction

    Get PDF
    Addiction is characterized by a profound intersubject (phenotypic) variability in the expression of addictive symptomatology and propensity to relapse following treatment. However, laboratory investigations have primarily focused on common neural substrates in addiction and have not yet been able to identify mechanisms that can account for the multifaceted phenotypic behaviors reported in the literature. To fill this knowledge gap theoretically, here we simulated phenotypic variations in addiction symptomology and responses to putative treatments, using both a neural model, based on cortico-striatal circuit dynamics, and an algorithmic model of reinforcement learning (RL). These simulations rely on the widely accepted assumption that both the ventral, model-based, goal-directed system and the dorsal, model-free, habitual system are vulnerable to extra-physiologic dopamine reinforcements triggered by addictive rewards. We found that endophenotypic differences in the balance between the two circuit or control systems resulted in an inverted-U shape in optimal choice behavior. Specifically, greater unbalance led to a higher likelihood of developing addiction and more severe drug-taking behaviors. Furthermore, endophenotypes with opposite asymmetrical biases among cortico-striatal circuits expressed similar addiction behaviors, but responded differently to simulated treatments, suggesting personalized treatment development could rely on endophenotypic rather than phenotypic differentiations. We propose our simulated results, confirmed across neural and algorithmic levels of analysis, inform on a fundamental and, to date, neglected quantitative method to characterize clinical heterogeneity in addiction

    Differential hypothalamic–pituitary–adrenal activation of the neuroactive steroids pregnenolone sulfate and deoxycorticosterone in healthy controls and alcohol-dependent subjects

    Get PDF
    Ethanol and the neuroactive steroids have interactive neuropharmacological effects and chronic ethanol administration blunts the ethanol-induced increase in neuroactive steroid levels in rodent plasma and brain. Few studies have explored neuroactive steroid regulation in alcohol-dependent human subjects. In fact, the regulation of adrenal neuroactive steroids has not been well defined in healthy controls. We thus explored the regulation of two neuroactive steroids, pregnenolone sulfate (PREG-S) and deoxycorticosterone, by pharmacological challenges to the hypothalamic-pituitary-adrenal (HPA) axis in healthy controls and one-month abstinent alcohol-dependent patients with co-occurring nicotine dependence. Plasma levels of PREG-S and deoxycorticosterone were measured by radioimmunoassay in controls and alcohol-dependent patients after challenges of naloxone, ovine corticotrophin releasing hormone (oCRH), dexamethasone, cosyntropin, and cosyntropin following high-dose dexamethasone. In addition, basal diurnal measures of both hormones were obtained. PREG-S plasma levels in healthy controls were increased by cosyntropin challenge (with and without dexamethasone pretreatment) and decreased by dexamethasone challenge. However, PREG-S concentrations were not altered by naloxone or oCRH challenges, suggesting that PREG-S is not solely regulated by hypothalamic or pituitary stimulation. Deoxycorticosterone, in contrast, is regulated by HPA challenge stimulation in a manner similar to cortisol. Alcohol-dependent patients had a blunted PREG-S response to cosyntropin (with and without dexamethasone pretreatment). Furthermore, the time to peak deoxycorticosterone response following oCRH was delayed in alcohol-dependent patients compared to controls. These results indicate that plasma PREG-S and deoxycorticosterone levels are differentially regulated by HPA axis modulation in human plasma. Further, alcohol-dependent patients show a blunted PREG-S response to adrenal stimulation and a delayed deoxycorticosterone response to oCRH challenge

    Dissection of Hypothalamic-Pituitary-Adrenal Axis Pathology in 1-Month-Abstinent Alcohol-Dependent Men, Part 2: Response to Ovine Corticotropin-Releasing Factor and Naloxone

    Full text link
    Pituitary and adrenal responsiveness is suppressed in abstinent alcohol-dependent individuals. To clarify the specific organizational disruption in hypothalamic-pituitary-adrenal functioning during early abstinence, the authors separately assessed each level of the stress-response axis. In this second of a two-part study, ovine corticotropin-releasing factor (oCRH) was used to stimulate the pituitary corticotrophs, and naloxone was used to activate the axis at the hypothalamic level. In addition, pulsatile characteristics of corticotropin and cortisol were assessed over a 12-hr period (0800 to 2000 hr). Methods : Eleven abstinent alcohol-dependent men and 10 healthy comparison participants were assessed. All participants were between the ages of 30 and 50 years, and alcohol-dependent patients were abstinent from 4 to 6 weeks. Basal concentrations of corticotropin and cortisol were obtained every 10 min from 0800 to 2000 hr and subjected to pulsatile analysis. Plasma corticotropin and cortisol concentrations were then obtained every 5 to 10 min after low-dose, intravenously administered doses of oCRH (0.4 μg/kg) or naloxone (0.125 mg/kg). Medications were administered at 2000 hr and the two challenge studies were separated by 48 hr. Results : Pulsatile analysis revealed that the mean corticotropin amplitude was increased in alcohol-dependent patients relative to controls ( p < 0.05). Other pulsatile characteristics of corticotropin and all cortisol pulsatile measures were not significantly different between the two groups. The integrated cortisol response to oCRH was significantly lower in alcohol-dependent patients compared with controls ( p < 0.01), but the integrated corticotropin response was not significantly different. In contrast, neither the corticotropin nor the cortisol response to naloxone was significantly different between groups. Conclusions : Adrenocorticoid hyposensitivity persists after oCRH infusion for at least 1 month after cessation of drinking, whereas hyporesponsiveness of the pituitary corticotrophs to CRH seems to resolve with continued abstinence. The authors suggest that adrenocortical hyporesponsiveness during prolonged abstinence may impact relapse risk.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65174/1/01.ALC.0000158939.25531.EE.pd

    The Classification of Substance Use Disorders: Historical, Contextual, and Conceptual Considerations

    No full text
    This article provides an overview of the history of substance use and misuse and chronicles the long shared history humans have had with psychoactive substances, including alcohol. The practical and personal functions of substances and the prevailing views of society towards substance users are described for selected historical periods and within certain cultural contexts. This article portrays how the changing historical and cultural milieu influences the prevailing medical, moral, and legal conceptualizations of substance use as reflected both in popular opinion and the consensus of the scientific community and represented by the American Psychiatric Association’s (APA) Diagnostic and Statistical Manual of Mental Disorders (DSM). Finally, this article discusses the efforts to classify substance use disorders (SUDs) and associated psychopathology in the APA compendium. Controversies both lingering and resolved in the field are discussed, and implications for the future of SUD diagnoses are identified

    Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders

    No full text
    • …
    corecore