56 research outputs found

    Are we missing the target? Are we aiming too low? What are the aerobic exercise prescriptions and their effects on markers of cardiovascular health and systemic inflammation in patients with knee osteoarthritis? A systematic review and meta-analysis

    Get PDF
    © Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ. Objectives We systemically reviewed published studies that evaluated aerobic exercise interventions in patients with knee osteoarthritis (OA) to: (1) report the frequency, intensity, type and time (FITT) of exercise prescriptions and (2) quantify the changes in markers of cardiovascular health and systemic inflammation. Data sources PubMed, CINAHL, Scopus; inception to January 2019. Eligibility criteria Randomised clinical trials (RCT), cohort studies, case series. Design We summarised exercise prescriptions for all studies and calculated effect sizes with 95% CIs for between-group (RCTs that compared exercise and control groups) and within-group (pre-post exercise) differences in aerobic capacity (VO 2), heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP) and inflammatory markers (interleukin-6 (IL-6), tumour necrosis factor-alpha). We pooled results where possible using random effects models. Results Interventions from 49 studies were summarised; 8% (4/49) met all FITT guidelines; 16% (8/49) met all or most FITT guidelines. Fourteen studies (10 RCTs) reported at least one marker of cardiovascular health or systemic inflammation. Mean differences (95% CI) indicated a small to moderate increase in VO 2 (0.84 mL/min/kg; 95% CI 0.37 to 1.31), decrease in HR (-3.56 beats per minute; 95% CI -5.60 to -1.52) and DBP (-4.10 mm Hg; 95% CI -4.82 to -3.38) and no change in SBP (-0.36 mm Hg; 95% CI -3.88 to 3.16) and IL-6 (0.37 pg/mL; 95% CI -0.11 to 0.85). Within-group differences were also small to moderate. Conclusions In studies of aerobic exercise in patients with knee OA, very few interventions met guideline-recommended dose; there were small to moderate changes in markers of cardiovascular health and no decrease in markers of systemic inflammation. These findings question whether aerobic exercise is being used to its full potential in patients with knee OA. PROSPERO registration number CRD42018087859

    Continuous manufacturing via hot-melt extrusion and scale up: regulatory matters

    Get PDF
    Currently, because globalization, the pharmaceutical industry is facing enormous challenges to comply with regulatory matters. Reduced patent life and overall decreased profitability of newly discovered drugs are also forcing the pharmaceutical industry to shorten the drug development time with maximum throughput. Therefore, continuous manufacturing (CM) processes via hot melt extrusion (HME) can be a promising alternative for achieving these goals. HME offers solvent-free green technology with a process that is easy to scale up. Moreover, CM provides better product quality assurance compared with batch processes, with fewer labor costs and shorter time to development. In this review, we primarily focus on various aspects of CM and the emerging application of HME to bridge the current manufacturing gap in pharmaceutical sphere

    Understanding biomolecular motion, recognition, and allostery by use of conformational ensembles

    Get PDF
    We review the role conformational ensembles can play in the analysis of biomolecular dynamics, molecular recognition, and allostery. We introduce currently available methods for generating ensembles of biomolecules and illustrate their application with relevant examples from the literature. We show how, for binding, conformational ensembles provide a way of distinguishing the competing models of induced fit and conformational selection. For allostery we review the classic models and show how conformational ensembles can play a role in unravelling the intricate pathways of communication that enable allostery to occur. Finally, we discuss the limitations of conformational ensembles and highlight some potential applications for the future

    Mid-latitude glaciation on Mars

    No full text
    Near-surface water ice, either pure or mixed with regolith, forms a widespread suite of distinctive landforms in Mars’ mid-latitudes. These landforms are in many cases sufficiently similar to cryospheric features on Earth to allow analogue-based comparisons to be made. However, our understanding of glacial processes in Mars’ subpolar latitudes remains far from complete, and crucial fundamental issues remain unresolved. These include basic glaciological information such as the internal physical and thermal structure of martian ice masses, whether (and how) those ice masses move, and the nature of any mass-balance regime they are subject to. Addressing these issues is complicated by the fact that any current knowledge, being based overwhelmingly on the visual interpretation of remotely sensed images, is insufficient to determine the extent to which these landforms are currently active or relict. Addressing these issues would contribute not only to our understanding of Mars’ current landscape but also to our knowledge of Mars’ long-term climatic variability and to our awareness of where and in what form H2O exists on Mars – information that would be of value to future space missions. The aim of this review is to bring the state of knowledge regarding mid-latitude glaciation on Mars to the attention of the wider research community. As background, we provide an overview of the geological and planetary framework within which Mars’ mid-latitude ice was deposited. We then define and describe the various ice-related landforms that have been identified within Mars’ mid-latitudes, and we review the processes that have been proposed to explain the origin and physical characteristics of those landforms. Finally, we present what we consider to be key avenues for further research
    corecore