192 research outputs found

    Theory of spin-Hall transport of heavy holes in semiconductor quantum wells

    Full text link
    Based on a proper definition of the spin current, we investigate the spin-Hall effect of heavy holes in narrow quantum wells in the presence of Rashba spin-orbit coupling by using a spin-density matrix approach. In contrast to previous results obtained on the basis of the conventional definition of the spin current, we arrive at the conclusion that an electric-field-induced steady-state spin-Hall current does not exist in both, pure and disordered infinite samples. Only an ac field can induce a spin-Hall effect in such systems.Comment: 6 pages, submitted to J. Phys.: Condens. Matte

    Spin-Hall effect and spin-coherent excitations in a strongly confined two-dimensional hole gas

    Full text link
    Based on a rigorous quantum-kinetic approach, spin-charge coupled drift-diffusion equations are derived for a strongly confined two-dimensional hole gas. An electric field leads to a coupling between the spin and charge degrees of freedom. For weak spin-orbit interaction, this coupling gives rise to the intrinsic spin-Hall effect. There exists a threshold value of the spin-orbit coupling constant that separates spin diffusion from ballistic spin transport. In the latter regime, undamped spin-coherent oscillations are observed. This result is confirmed by an exact microscopic approach valid in the ballistic regime.Comment: 10 pages, 2 figure

    Coupled spin-charge drift-diffusion approach for a two-dimensional electron gas with Rashba spin-orbit coupling

    Full text link
    Based on kinetic equations for the density matrix, drift-diffusion equations are derived for a two-dimensional electron gas with Rashba spin-orbit coupling. Universal results are obtained for the weak coupling case. Most interesting is the observation that with increasing spin-orbit coupling strengths there is a sharp transition between spin diffusion and ballistic spin transport. For strong spin-orbit coupling, when the elastic scattering time is much larger than the spin relaxation time, undamped spin-coherent waves are identified. The existence of these long-lived spin-coherent states is confirmed by exact analytical results obtained from microscopic kinetic equations valid in the ballistic regime.Comment: 16 pages, 3 figure

    Field-induced spin excitations in Rashba-Dresselhaus two-dimensional electron systems probed by surface acoustic waves

    Full text link
    A spin-rotation symmetry in spin-orbit coupled two-dimensional electron systems gives rise to a long-lived spin excitation that is robust against short-range impurity scattering. The influence of a constant in-plane electric field on this persistent spin helix is studied. To probe the field-induced eigen-modes of the spin-charge coupled system, a surface acoustic wave is exploited that provides the wave-vector for resonant excitation. The approach takes advantage of methods worked out in the field of space-charge waves. Sharp resonances in the field dependence of the in-plane and out-of-plane magnetization are identified.Comment: 13 pages, 2 figure

    Oscillation of spin polarization in a two-dimensional hole gas under a perpendicular magnetic field

    Full text link
    Spin-charge coupling is studied for a strongly confined two-dimensional hole gas subject to a perpendicular magnetic field. The study is based on spin-charge coupled drift-diffusion equations derived from quantum-kinetic equations in an exact manner. The spin-orbit interaction induces an extra out-of-plane spin polarization. This contribution exhibits a persistent oscillatory pattern in the strong-coupling regime.Comment: 11 pages and 1 figur

    A Variational Approach to Nonlocal Exciton-Phonon Coupling

    Full text link
    In this paper we apply variational energy band theory to a form of the Holstein Hamiltonian in which the influence of lattice vibrations (optical phonons) on both local site energies (local coupling) and transfers of electronic excitations between neighboring sites (nonlocal coupling) is taken into account. A flexible spanning set of orthonormal eigenfunctions of the joint exciton-phonon crystal momentum is used to arrive at a variational estimate (bound) of the ground state energy for every value of the joint crystal momentum, yielding a variational estimate of the lowest polaron energy band across the entire Brillouin zone, as well as the complete set of polaron Bloch functions associated with this band. The variation is implemented numerically, avoiding restrictive assumptions that have limited the scope of previous assaults on the same and similar problems. Polaron energy bands and the structure of the associated Bloch states are studied at general points in the three-dimensional parameter space of the model Hamiltonian (electronic tunneling, local coupling, nonlocal coupling), though our principal emphasis lay in under-studied area of nonlocal coupling and its interplay with electronic tunneling; a phase diagram summarizing the latter is presented. The common notion of a "self-trapping transition" is addressed and generalized.Comment: 33 pages, 11 figure

    Localized modes in defective multilayer structures

    Full text link
    In this paper, the localized surface modes in a defective multilayer structure has been investigated. It is shown that the defective multilayer structures can support two different kind of localized modes depending on the position and the thickness of the defect layer. One of these modes is localized at the interface between the multilayer structure and a homogeneous medium (the so-called surface mode) and the other one is localized at the defect layer (defect localized mode). We reveal that the presence of defect layer pushes the dispersion curve of surface modes to the lower or the upper edge of the photonic bandgap depending on the homogeneous medium is a left-handed or right-handed medium (e.g. vacuum), respectively. So, the existence region of the surface modes restricted. Moreover, the effect of defect on the energy flow velocity of the surface modes is discussed.Comment: 5 pages, 7 figure

    On dispersive energy transport and relaxation in the hopping regime

    Full text link
    A new method for investigating relaxation phenomena for charge carriers hopping between localized tail states has been developed. It allows us to consider both charge and energy {\it dispersive} transport. The method is based on the idea of quasi-elasticity: the typical energy loss during a hop is much less than all other characteristic energies. We have investigated two models with different density of states energy dependencies with our method. In general, we have found that the motion of a packet in energy space is affected by two competing tendencies. First, there is a packet broadening, i.e. the dispersive energy transport. Second, there is a narrowing of the packet, if the density of states is depleting with decreasing energy. It is the interplay of these two tendencies that determines the overall evolution. If the density of states is constant, only broadening exists. In this case a packet in energy space evolves into Gaussian one, moving with constant drift velocity and mean square deviation increasing linearly in time. If the density of states depletes exponentially with decreasing energy, the motion of the packet tremendously slows down with time. For large times the mean square deviation of the packet becomes constant, so that the motion of the packet is ``soliton-like''.Comment: 26 pages, RevTeX, 10 EPS figures, submitted to Phys. Rev.

    Ac hopping conduction at extreme disorder takes place on the percolating cluster

    Get PDF
    Simulations of the random barrier model show that ac currents at extreme disorder are carried almost entirely by the percolating cluster slightly above threshold; thus contradicting traditional theories contributions from isolated low-activation-energy clusters are negligible. The effective medium approximation in conjunction with the Alexander-Orbach conjecture leads to an excellent analytical fit to the universal ac conductivity with no nontrivial fitting parameters
    • …
    corecore