3 research outputs found
Identification of miRNA-103 in the cellular fraction of human peripheral blood as a potential biomarker for malignant mesothelioma
:
To date, no biomarkers with reasonable sensitivity and specificity for the early detection of malignant mesothelioma have been described. The use of microRNAs (miRNAs) as minimally-invasive biomarkers has opened new opportunities for the diagnosis of cancer, primarily because they exhibit tumor-specific expression profiles and have been commonly observed in blood of both cancer patients and healthy controls. The aim of this pilot study was to identify miRNAs in the cellular fraction of human peripheral blood as potential novel biomarkers for the detection of malignant mesothelioma.
:
Using oligonucleotide microarrays for biomarker identification the miRNA levels in the cellular fraction of human peripheral blood of mesothelioma patients and asbestos-exposed controls were analyzed. Using a threefold expression change in combination with a significance level of p<0.05, miR-103 was identified as a potential biomarker for malignant mesothelioma. Quantitative real-time PCR (qRT-PCR) was used for validation of miR-103 in 23 malignant mesothelioma patients, 17 asbestos-exposed controls, and 25 controls from the general population. For discrimination of mesothelioma patients from asbestos-exposed controls a sensitivity of 83% and a specificity of 71% were calculated, and for discrimination of mesothelioma patients from the general population a sensitivity of 78% and a specificity of 76%.
:
The results of this pilot study show that miR-103 is characterized by a promising sensitivity and specificity and might be a potential minimally-invasive biomarker for the diagnosis of mesothelioma. In addition, our results support the concept of using the cellular fraction of human blood for biomarker discovery. However, for early detection of malignant mesothelioma the feasibility of miR-103 alone or in combination with other biomarkers needs to be analyzed in a prospective study
Combination of MiR-103a-3p and mesothelin improves the biomarker performance of malignant mesothelioma diagnosis
For the detection of malignant mesothelioma no single biomarker with reasonable sensitivity and specificity has been described so far. Mesothelin, the most prominent blood-based biomarker, is characterized by high specificity but low sensitivity. It might be reasonable to combine biomarkers of different molecular classes in order to improve the overall performance. The aim of this study was to assess the performance of the combination of mesothelin and miR-103a-3p as blood-based biomarker for mesothelioma.
Mesothelin concentration in plasma and miR-103a-3p levels in the cellular blood fraction were analyzed in 43 male mesothelioma patients and 52 male controls formerly exposed to asbestos. For the discrimination of epithelioid and biphasic mesothelioma from asbestos-exposed controls mesothelin and miR-103a-3p showed 74% and 89% sensitivity and 85% and 63% specificity, respectively. For the combination of mesothelin and miR-103a-3p a sensitivity of 95% and a specificity of 81% were calculated.
The results of this study show that the combination of mesothelin and miR-103a-3p improves the diagnostic performance of individual blood-based biomarker to detect malignant mesothelioma. The obtained results indicate that the use of biomarkers of different molecular classes might be a reasonable approach to assemble a biomarker panel
Cross-contamination of a UROtsa stock with T24 cells
UROtsa is an authentic, immortalized human urothelial cell line that is used to study the effects of metals and other toxic substances, mostly in the context of bladder cancer carcinogenesis. Unusual properties on the molecular level of a provided UROtsa cell line stock prompted us to verify its identity.
UROtsa cell line stocks from different sources were tested on several molecular levels and compared with other cell lines. MicroRNA and mRNA expression was determined by Real-Time PCR. Chromosome numbers were checked and PCR of different regions of the large T-antigen was performed. DNA methylation of and was analyzed by pyrosequencing and compared with results from the cell lines RT4, T24, HeLa, BEAS-2B, and HepG2. Finally, short tandem repeat (STR) profiling was applied.
All tested UROtsa cell line stocks lacked large T-antigen. STR analysis unequivocally identified our main UROtsa stock as the bladder cancer cell line T24, which was different from two authentic UROtsa stocks that served as controls. Analysis of DNA methylation patterns and RNA expression confirmed their differences. Methylation pattern and mRNA expression of the contaminating T24 cell line showed moderate changes even after long-term culture of up to 56 weeks, whereas miRNAs and chromosome numbers varied markedly.
It is important to check the identity of cell lines, especially those that are not distributed by major cell banks. However, for some cell lines STR profiles are not available. Therefore, new cell lines should either be submitted to cell banks or at least their STR profile determined and published as part of their initial characterization. Our results should help to improve the identification of UROtsa and other cells on different molecular levels and provide information on the use of urothelial cells for long-term experiments