25 research outputs found

    In Vitro Dedifferentiation of Melanocytes from Adult Epidermis

    Get PDF
    In previous work we described a novel culture technique using a cholera toxin and PMA-free medium (Mel-mix) for obtaining pure melanocyte cultures from human adult epidermis. In Mel-mix medium the cultured melanocytes are bipolar, unpigmented and highly proliferative. Further characterization of the cultured melanocytes revealed the disappearance of c-Kit and TRP-1 and induction of nestin expression, indicating that melanocytes dedifferentiated in this in vitro culture. Cholera toxin and PMA were able to induce c-Kit and TRP-1 protein expressions in the cells, reversing dedifferentiation. TRP-1 mRNA expression was induced in dedifferentiated melanocytes by UV-B irradiated keratinocyte supernatants, however direct UV-B irradiation of the cells resulted in further decrease of TRP-1 mRNA expression. These dedifferentiated, easily accessible cultured melanocytes provide a good model for studying melanocyte differentiation and possibly transdifferentiation. Because melanocytes in Mel-mix medium can be cultured with human serum as the only supplement, this culture system is also suitable for autologous cell transplantation

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Anterior gradient protein 3 is associated with less aggressive tumors and better outcome of breast cancer patients

    No full text
    Joanna Obacz,1 Veronika Brychtova,1 Jan Podhorec,1 Pavel Fabian,2 Petr Dobes,1 Borivoj Vojtesek,1 Roman Hrstka1 1Regional Centre for Applied Molecular Oncology (RECAMO), 2Department of Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic Abstract: Anterior gradient protein (AGR) 3 is a highly related homologue of pro-oncogenic AGR2 and belongs to the family of protein disulfide isomerases. Although AGR3 was found in breast, ovary, prostate, and liver cancer, it remains of yet poorly defined function in tumo-rigenesis. This study aimed to determine AGR3 expression in a cohort of 129 primary breast carcinomas and evaluate the clinical and prognostic significance of AGR3 in these tumors. The immunohistochemical analysis revealed the presence of AGR3 staining to varying degrees in 80% of analyzed specimens. The percentage of AGR3-positive cells significantly correlated with estrogen receptor, progesterone receptor (both P<0.0001) as well as low histological grade (P=0.003), and inversely correlated with the level of Ki-67 expression (P<0.0001). In the whole cohort, AGR3 expression was associated with longer progression-free survival (PFS), whereas AGR3-positive subgroup of low-histological grade tumors showed both significantly longer PFS and overall survival. In conclusion, AGR3 is associated with the level of differentiation, slowly proliferating tumors, and more favorable prognosis of breast cancer patients. Keywords: AGR3, patient survival, protein disulfide isomerase, ER-positive breast cancer, immuno­histochemistr
    corecore