31 research outputs found
Imbalance of Hsp70 family variants fosters tau accumulation
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154405/1/fsb2027004018.pd
Epitope analysis following active immunization with tau proteins reveals immunogens implicated in tau pathogenesis
Abstract
Background
Abnormal tau hyperphosphorylation and its accumulation into intra-neuronal neurofibrillary tangles are linked to neurodegeneration in Alzheimer’s disease and similar tauopathies. One strategy to reduce accumulation is through immunization, but the most immunogenic tau epitopes have so far remained unknown. To fill this gap, we immunized mice with recombinant tau to build a map of the most immunogenic tau epitopes.
Methods
Non-transgenic and rTg4510 tau transgenic mice aged 5 months were immunized with either human wild-type tau (Wt, 4R0N) or P301L tau (4R0N). Each protein was formulated in Quil A adjuvant. Sera and splenocytes of vaccinated mice were collected to assess the humoral and cellular immune responses to tau. We employed a peptide array assay to identify the most effective epitopes. Brain histology was utilized to measure the effects of vaccination on tau pathology and inflammation.
Results
Humoral immune responses following immunization demonstrated robust antibody titers (up to 1:80,000 endpoint titers) to each tau species in both mice models. The number of IFN-γ producing T cells and their proliferation were also increased in splenocytes from immunized mice, indicating an increased cellular immune response, and tau levels and neuroinflammation were both reduced. We identified five immunogenic motifs within either the N-terminal (9-15 and 21-27 amino acids), proline rich (168-174 and 220-228 amino acids), or the C-terminal regions (427-438 amino acids) of the wild-type and P301L tau protein sequence.
Conclusions
Our study identifies five previously unknown immunogenic motifs of wild-type and mutated (P301L) tau protein. Immunization with both proteins resulted in reduced tau pathology and neuroinflammation in a tau transgenic model, supporting the efficacy of tau immunotherapy in tauopathy.http://deepblue.lib.umich.edu/bitstream/2027.42/109522/1/12974_2014_Article_152.pd
Recommended from our members
The disorderly conduct of Hsc70 and its interaction with the Alzheimer's-related Tau protein
Hsp70 chaperones bind to various protein substrates for folding, trafficking, and degradation. Considerable structural information is available about how prokaryotic Hsp70 (DnaK) binds substrates, but less is known about mammalian Hsp70s, of which there are 13 isoforms encoded in the human genome. Here, we report the interaction between the human Hsp70 isoform heat shock cognate 71-kDa protein (Hsc70 or HSPA8) and peptides derived from the microtubule-associated protein Tau, which is linked to Alzheimer's disease. For structural studies, we used an Hsc70 construct (called BETA) comprising the substrate-binding domain but lacking the lid. Importantly, we found that truncating the lid does not significantly impair Hsc70's chaperone activity or allostery in vitro Using NMR, we show that BETA is partially dynamically disordered in the absence of substrate and that binding of the Tau sequence GKVQIINKKG (with a KD = 500 nm) causes dramatic rigidification of BETA. NOE distance measurements revealed that Tau binds to the canonical substrate-binding cleft, similar to the binding observed with DnaK. To further develop BETA as a tool for studying Hsc70 interactions, we also measured BETA binding in NMR and fluorescent competition assays to peptides derived from huntingtin, insulin, a second Tau-recognition sequence, and a KFERQ-like sequence linked to chaperone-mediated autophagy. We found that the insulin C-peptide binds BETA with high affinity (KD < 100 nm), whereas the others do not (KD > 100 μm). Together, our findings reveal several similarities and differences in how prokaryotic and mammalian Hsp70 isoforms interact with different substrate peptides
Age-associated epigenetic upregulation of the FKBP5 gene selectively impairs stress resiliency.
Single nucleotide polymorphisms (SNPs) in the FK506 binding protein 5 (FKBP5) gene combine with traumatic events to increase risk for post-traumatic stress and major depressive disorders (PTSD and MDD). These SNPs increase FKBP51 protein expression through a mechanism involving demethylation of the gene and altered glucocorticoid signaling. Aged animals also display elevated FKBP51 levels, which contribute to impaired resiliency to depressive-like behaviors through impaired glucocorticoid signaling, a phenotype that is abrogated in FKBP5-/- mice. But the age of onset and progressive stability of these phenotypes remain unknown. Moreover, it is unclear how FKBP5 deletion affects other glucocorticoid-dependent processes or if age-associated increases in FKBP51 expression are mediated through a similar epigenetic process caused by SNPs in the FKBP5 gene. Here, we show that FKBP51-mediated impairment in stress resiliency and glucocorticoid signaling occurs by 10 months of age and this increased over their lifespan. Surprisingly, despite these progressive changes in glucocorticoid responsiveness, FKBP5-/- mice displayed normal longevity, glucose tolerance, blood composition and cytokine profiles across lifespan, phenotypes normally associated with glucocorticoid signaling. We also found that methylation of Fkbp5 decreased with age in mice, a process that likely explains the age-associated increases in FKBP51 levels. Thus, epigenetic upregulation of FKBP51 with age can selectively impair psychological stress-resiliency, but does not affect other glucocorticoid-mediated physiological processes. This makes FKBP51 a unique and attractive therapeutic target to treat PTSD and MDD. In addition, aged wild-type mice may be a useful model for investigating the mechanisms of FKBP5 SNPs associated with these disorders
Inhibition of Both Hsp70 Activity and Tau Aggregation in \u3cem\u3eVitro\u3c/em\u3e Best Predicts Tau Lowering Activity of Small Molecules
Three scaffolds with inhibitory activity against the heat shock protein 70 (Hsp70) family of chaperones have been found to enhance the degradation of the microtubule associated protein tau in cells, neurons, and brain tissue. This is important because tau accumulation is linked to neurodegenerative diseases including Alzheimer’s disease (AD) and chronic traumatic encephalopathy (CTE). Here, we expanded upon this study to investigate the anti-tau efficacy of additional scaffolds with Hsp70 inhibitory activity. Five of the nine scaffolds tested lowered tau levels, with the rhodacyanine and phenothiazine scaffolds exhibiting the highest potency as previously described. Because phenothiazines also inhibit tau aggregation in vitro, we suspected that this activity might be a more accurate predictor of tau lowering. Interestingly, the rhodacyanines did inhibit in vitro tau aggregation to a similar degree as phenothiazines, correlating well with tau-lowering efficacy in cells and ex vivo slices. Moreover, other Hsp70 inhibitor scaffolds with weaker tau-lowering activity in cells inhibited tau aggregation in vitro, albeit at lower potencies. When we tested six well-characterized tau aggregation inhibitors, we determined that this mechanism of action was not a better predictor of tau-lowering than Hsp70 inhibition. Instead, we found that compounds possessing both activities were the most effective at promoting tau clearance. Moreover, cytotoxicity and PAINS activity are critical factors that can lead to false-positive lead identification. Strategies designed around these principles will likely yield more efficacious tau-lowering compounds
The active Hsc70/tau complex can be exploited to enhance tau turnover without damaging microtubule dynamics
The pathological accumulation of abnormally hyperphosphorylated and aggregated tau, a neuronal microtubule (MT)-associated protein that functions to maintain MT stability, is implicated in a number of hereditary and sporadic neurodegenerative diseases including frontotemporal dementia and Alzheimer's disease. Targeting tau for the treatment of these diseases is an area of intense interest and toward that end, modulation of cellular molecular chaperones is a potential therapeutic target. In particular, the constitutive Hsp70 isoform, Hsc70, seems highly interconnected with tau, preserving tau protein levels and synergizing with it to assemble MTs. But the relationship between tau and Hsc70, as well as the impact of this interaction in neurons and its therapeutic implications remain unknown. Using a human dominant negative Hsc70 that resembles isoform selective inhibition of this important chaperone, we found for the first time that Hsc70 activity is required to stimulate MT assembly in cells and brain. However, surprisingly, active Hsc70 also requires active tau to regulate MT assembly in vivo, suggesting that tau acts in some ways as a co-chaperone for Hsc70 to coordinate MT assembly. This was despite tau binding to Hsc70 as substrate, as determined biochemically. Moreover, we show that while chronic Hsc70 inhibition damaged MT dynamics, intermittent treatment with a small molecule Hsp70 inhibitor lowered tau in brain tissue without disrupting MT integrity. Thus, in tauopathies, where MT injury would be detrimental to neurons, the unique relationship of tau with the Hsc70 machinery can be exploited to deplete tau levels without damaging MT networks
Inhibition of Both Hsp70 Activity and Tau Aggregation in Vitro Best Predicts Tau Lowering Activity of Small Molecules
Three scaffolds with inhibitory activity against the heat shock protein 70 (Hsp70) family of chaperones have been found to enhance the degradation of the microtubule associated protein tau in cells, neurons, and brain tissue. This is important because tau accumulation is linked to neurodegenerative diseases including Alzheimer’s disease (AD) and chronic traumatic encephalopathy (CTE). Here, we expanded upon this study to investigate the anti-tau efficacy of additional scaffolds with Hsp70 inhibitory activity. Five of the nine scaffolds tested lowered tau levels, with the rhodacyanine and phenothiazine scaffolds exhibiting the highest potency as previously described. Because phenothiazines also inhibit tau aggregation in vitro, we suspected that this activity might be a more accurate predictor of tau lowering. Interestingly, the rhodacyanines did inhibit in vitro tau aggregation to a similar degree as phenothiazines, correlating well with tau-lowering efficacy in cells and ex vivo slices. Moreover, other Hsp70 inhibitor scaffolds with weaker tau-lowering activity in cells inhibited tau aggregation in vitro, albeit at lower potencies. When we tested six well-characterized tau aggregation inhibitors, we determined that this mechanism of action was not a better predictor of tau-lowering than Hsp70 inhibition. Instead, we found that compounds possessing both activities were the most effective at promoting tau clearance. Moreover, cytotoxicity and PAINS activity are critical factors that can lead to false-positive lead identification. Strategies designed around these principles will likely yield more efficacious tau-lowering compounds
Protein Cross-Linking Capillary Electrophoresis for Protein–Protein Interaction Analysis
Capillary
electrophoresis (CE) has been identified as a useful
platform for detecting, quantifying, and screening for modulators
of protein–protein interactions (PPIs). In this method, one
protein binding partner is labeled with a fluorophore, the protein
binding partners are mixed, and then, the complex is separated from
free protein to allow direct determination of bound to free ratios.
Although it possesses many advantages for PPI studies, the method
is limited by the need to have separation conditions that both prevent
protein adsorption to capillary and maintain protein interactions
during the separation. In this work, we use protein cross-linking
capillary electrophoresis (PXCE) to overcome this limitation. In PXCE,
the proteins are cross-linked under binding conditions and then separated.
This approach eliminates the need to maintain noncovalent interactions
during electrophoresis and facilitates method development. We report
PXCE methods for an antibody–antigen interaction and heterodimer
and homodimer heat shock protein complexes. Complexes are cross-linked
by short treatments with formaldehyde after reaching binding equilibrium.
Cross-linked complexes are separated by electrophoretic mobility using
free solution CE or by size using sieving electrophoresis of SDS complexes.
The method gives good quantitative results; e.g., a lysozyme–antibody
interaction was found to have <i>K</i><sub>d</sub> = 24
± 3 nM by PXCE and <i>K</i><sub>d</sub> = 17 ±
2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70)
in complex with bcl2 associated athanogene 3 (Bag3) was found to have <i>K</i><sub>d</sub> = 25 ± 5 nM by PXCE which agrees with <i>K</i><sub>d</sub> values reported without cross-linking. Hsp70–Bag3
binding site mutants and small molecule inhibitors of Hsp70–Bag3
were characterized by PXCE with good agreement to inhibitory constants
and IC<sub>50</sub> values obtained by a bead-based flow cytometry
protein interaction assay (FCPIA). PXCE allows rapid method development
for quantitative analysis of PPIs
<i>Fkbp5</i> DNA methylation decreases with age in mice.
<p>Isolated DNA samples from wild-type mice aged 1 (n = 3), 3.5 (n = 3), 4 (n = 6), 5 (n = 7), 6 (n = 6), and 12 (n = 3) months were subjected to bisulfite pyrosequencing. Multiple CpG sites in intron 5 were analyzed for <i>Fkbp5</i> methylation. Significant demethylation was found at CPG_3 (r = −0.3890, p<0.05), CPG_4 (r = −0.4004, p<0.05) and CpG_5 (r = −0.5044, p<0.01) as measured by linear regression analyses.</p