4 research outputs found

    Mammographic screening in routine practice: Multisite study of digital breast tomosynthesis and digital mammography screenings

    No full text
    Background The use of digital breast tomosynthesis (DBT) is increasing over digital mammography (DM) following studies demonstrating lower recall rates (RRs) and higher cancer detection rates (CDRs). However, inconsistent interpretation of evidence on the risks and benefits of mammography has resulted in varying screening mammography recommendations. Purpose To evaluate screening outcomes among women in the United States who underwent routine DM or DBT mammographic screening. Materials and Methods This retrospective cohort study included women aged 40-79 years who underwent DM or DBT screening mammograms between January 2014 and December 2020. Outcomes of RR, CDR, positive predictive value of recall (PPV1), biopsy rate, and positive predictive value of biopsy (PPV3) were compared between DM and DBT with use of adjusted multivariable logistic regression models. Results A total of 2 528 063 screening mammograms from 1 100 447 women (mean age, 57 years ± 10 [SD]) were included. In crude analyses, DBT (1 693 727 screening mammograms vs 834 336 DM screening mammograms) demonstrated lower RR (10.3% [95% CI: 10.3, 10.4] for DM vs 8.9% [95% CI: 8.9, 9.0] for DBT; P \u3c .001) and higher CDR (4.5 of 1000 screening mammograms [95% CI: 4.3, 4.6] vs 5.3 of 1000 [95% CI: 5.2, 5.5]; P \u3c .001), PPV1 (4.3% [95% CI: 4.2, 4.5] vs 5.9% [95% CI: 5.7, 6.0]; P \u3c .001), and biopsy rates (14.5 of 1000 screening mammograms [95% CI: 14.2, 14.7] vs 17.6 of 1000 [95% CI: 17.4, 17.8]; P \u3c .001). PPV3 was similar between cohorts (30.0% [95% CI: 29.2, 30.9] for DM vs 29.3% [95% CI: 28.7, 29.9] for DBT; P = .16). After adjustment for age, breast density, site, and index year, associations remained stable with respect to statistical significance. Conclusion Women undergoing digital breast tomosynthesis had improved screening mammography outcomes compared with women who underwent digital mammography. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bae and Seo in this issue

    Interleukin-22 drives nitric oxide-dependent DNA damage and dysplasia in a murine model of colitis-associated cancer

    No full text
    The risk of colon cancer is increased in patients with Crohn's disease and ulcerative colitis. Inflammation-induced DNA damage could be an important link between inflammation and cancer, although the pathways that link inflammation and DNA damage are incompletely defined. RAG2-deficient mice infected with Helicobacter hepaticus (Hh) develop colitis that progresses to lower bowel cancer. This process depends on nitric oxide (NO), a molecule with known mutagenic potential. We have previously hypothesized that production of NO by macrophages could be essential for Hh-driven carcinogenesis, however, whether Hh infection induces DNA damage in this model and whether this depends on NO has not been determined. Here we demonstrate that Hh infection of RAG2-deficient mice rapidly induces expression of iNOS and the development of DNA double-stranded breaks (DSBs) specifically in proliferating crypt epithelial cells. Generation of DSBs depended on iNOS activity, and further, induction of iNOS, the generation of DSBs, and the subsequent development of dysplasia were inhibited by depletion of the Hh-induced cytokine IL-22. These results demonstrate a strong association between Hh-induced DNA damage and the development of dysplasia, and further suggest that IL-22-dependent induction of iNOS within crypt epithelial cells rather than macrophages is a driving force in this process.National Institutes of Health (U.S.) (grant T32-OD010978-26)National Institutes of Health (U.S.) (grant R01-OD011141)National Institutes of Health (U.S.) (grant R01-DK099204)National Institutes of Health (U.S.) (grant P01-CA028842-29)National Institutes of Health (U.S.) (grant P30-ES002109
    corecore