373 research outputs found
Parametric study of advanced multistage axial-flow compressors
Axial flow compressor study to increase pressure ratio and reduce overall lengt
Complexing additives to reduce the immiscible phase formed in the hybrid ZnBr2 flow battery
The zinc-bromine redox flow battery (RFB) is one of a very few commercially viable RFB energy storage system capable of integration with intermittent renewable energy sources to deliver improved energy management. However, due to the volatility of the electrogenerated bromine and potential for its crossover from positive to negative electrolytes, this system requires the use of quaternary ammonium complexes (N-methyl-N-ethylpyrrolidinium, (MEP)) to capture this bromine. This produces an immiscible phase with the Br2 which requires a complex network of pipes, pumps and automated controls to ensure access to the electroactive material during discharge. In this work, the use of novel quaternary ammonium complexes to capture the electrogenerated bromine but to keep it in the aqueous phase is examined. Three compounds, 1-(carboxymethyl) pyridine-1-ium, 1-(2-carboxymethyl)-1-methylmorpholin-1-ium and 1-(2-carboxymethyl)-1-methylpyrrolidin-1-ium, were found to successfully reduce the volume of the immiscible phase formed on complexing with the polybromide (Brx-) whilst displaying similar enthalpy of vaporisation values as that of MEP. Electrochemical analysis also revealed that these compounds did not impact on the electrode kinetics of the Br-/Brx- reaction indicating that the resulting surface film formed with these compounds behaved as a chemically modified electrode, in contrast to the surface film formed with MEP
Checking and Enforcing Security through Opacity in Healthcare Applications
The Internet of Things (IoT) is a paradigm that can tremendously
revolutionize health care thus benefiting both hospitals, doctors and patients.
In this context, protecting the IoT in health care against interference,
including service attacks and malwares, is challenging. Opacity is a
confidentiality property capturing a system's ability to keep a subset of its
behavior hidden from passive observers. In this work, we seek to introduce an
IoT-based heart attack detection system, that could be life-saving for patients
without risking their need for privacy through the verification and enforcement
of opacity. Our main contributions are the use of a tool to verify opacity in
three of its forms, so as to detect privacy leaks in our system. Furthermore,
we develop an efficient, Symbolic Observation Graph (SOG)-based algorithm for
enforcing opacity
Common Representation of Information Flows for Dynamic Coalitions
We propose a formal foundation for reasoning about access control policies
within a Dynamic Coalition, defining an abstraction over existing access
control models and providing mechanisms for translation of those models into
information-flow domain. The abstracted information-flow domain model, called a
Common Representation, can then be used for defining a way to control the
evolution of Dynamic Coalitions with respect to information flow
Mapping the Space of Genomic Signatures
We propose a computational method to measure and visualize interrelationships
among any number of DNA sequences allowing, for example, the examination of
hundreds or thousands of complete mitochondrial genomes. An "image distance" is
computed for each pair of graphical representations of DNA sequences, and the
distances are visualized as a Molecular Distance Map: Each point on the map
represents a DNA sequence, and the spatial proximity between any two points
reflects the degree of structural similarity between the corresponding
sequences. The graphical representation of DNA sequences utilized, Chaos Game
Representation (CGR), is genome- and species-specific and can thus act as a
genomic signature. Consequently, Molecular Distance Maps could inform species
identification, taxonomic classifications and, to a certain extent,
evolutionary history. The image distance employed, Structural Dissimilarity
Index (DSSIM), implicitly compares the occurrences of oligomers of length up to
(herein ) in DNA sequences. We computed DSSIM distances for more than
5 million pairs of complete mitochondrial genomes, and used Multi-Dimensional
Scaling (MDS) to obtain Molecular Distance Maps that visually display the
sequence relatedness in various subsets, at different taxonomic levels. This
general-purpose method does not require DNA sequence homology and can thus be
used to compare similar or vastly different DNA sequences, genomic or
computer-generated, of the same or different lengths. We illustrate potential
uses of this approach by applying it to several taxonomic subsets: phylum
Vertebrata, (super)kingdom Protista, classes Amphibia-Insecta-Mammalia, class
Amphibia, and order Primates. This analysis of an extensive dataset confirms
that the oligomer composition of full mtDNA sequences can be a source of
taxonomic information.Comment: 14 pages, 7 figures. arXiv admin note: substantial text overlap with
arXiv:1307.375
Verification in Staged Tile Self-Assembly
We prove the unique assembly and unique shape verification problems,
benchmark measures of self-assembly model power, are
-hard and contained in (and in
for staged systems with stages). En route,
we prove that unique shape verification problem in the 2HAM is
-complete.Comment: An abstract version will appear in the proceedings of UCNC 201
On the nature of spectral line broadening in solar coronal dimmings
We analyze the profiles of iron emission lines observed in solar coronal
dimmings associated with coronal mass ejections, using the EUV Imaging
Spectrometer on board Hinode. We quantify line profile distortions with
empirical coefficients (asymmetry and peakedness) that compare the fitted
Gaussian to the data. We find that the apparent line broadenings reported in
previous studies are likely to be caused by inhomogeneities of flow velocities
along the line of sight, or at scales smaller than the resolution scale, or by
velocity fluctuations during the exposure time. The increase in the amplitude
of Alfv\'en waves cannot, alone, explain the observed features. A
double-Gaussian fit of the line profiles shows that, both for dimmings and
active region loops, one component is nearly at rest while the second component
presents a larger Doppler shift than that derived from a single-Gaussian fit.Comment: 16 pages, 11 figures - Accepted for publication in Ap
Optimal spectral lines for measuring chromospheric magnetic fields
This paper identifies spectral lines from X-ray to infrared wavelengths which
are optimally suited to measuring vector magnetic fields as high as possible in
the solar atmosphere. Instrumental and Earth's atmospheric properties, as well
as solar abundances, atmospheric properties and elementary atomic physics are
considered without bias towards particular wavelengths or diagnostic
techniques. While narrowly-focused investigations of individual lines have been
reported in detail, no assessment of the comparative merits of all lines has
ever been published. Although in the UV, on balance the Mg+ h and k lines near
2800 Angstroms are optimally suited to polarimetry of plasma near the base of
the solar corona. This result was unanticipated, given that longer-wavelength
lines offer greater sensitivity to the Zeeman effect. While these lines sample
optical depths photosphere to the coronal base, we argue that cores of multiple
spectral lines provide a far more discriminating probe of magnetic structure as
a function of optical depth than the core and inner wings of a strong line.
Thus, together with many chromospheric lines of Fe+ between 2585 and the h line
at 2803 Angstrom, this UV region promises new discoveries concerning how the
magnetic fields emerge, heat, and accelerate plasma as they battle to dominate
the force and energy balance within the poorly-understood chromosphere.Comment: Accepted for publication in the Astrophysical Journal. 12 pages, 2
figures, and 1 tabl
Updated Atomic Data and Calculations for X-ray Spectroscopy
We describe the latest release of AtomDB, version 2.0.2, a database of atomic
data and a plasma modeling code with a focus on X-ray astronomy. This release
includes several major updates to the fundamental atomic structure and process
data held within AtomDB, incorporating new ionization balance data,
state-selective recombination data, and updated collisional excitation data for
many ions, including the iron L-shell ions from Fe to Fe and
all of the hydrogen- and helium-like sequences. We also describe some of the
effects that these changes have on calculated emission and diagnostic line
ratios, such as changes in the temperature implied by the He-like G-ratios of
up to a factor of 2.Comment: Submitted to ApJ, 12 pages, 9 figure
A Hierarchy of Scheduler Classes for Stochastic Automata
Stochastic automata are a formal compositional model for concurrent
stochastic timed systems, with general distributions and non-deterministic
choices. Measures of interest are defined over schedulers that resolve the
nondeterminism. In this paper we investigate the power of various theoretically
and practically motivated classes of schedulers, considering the classic
complete-information view and a restriction to non-prophetic schedulers. We
prove a hierarchy of scheduler classes w.r.t. unbounded probabilistic
reachability. We find that, unlike Markovian formalisms, stochastic automata
distinguish most classes even in this basic setting. Verification and strategy
synthesis methods thus face a tradeoff between powerful and efficient classes.
Using lightweight scheduler sampling, we explore this tradeoff and demonstrate
the concept of a useful approximative verification technique for stochastic
automata
- …