259 research outputs found

    Ultra-fine dark matter structure in the Solar neighbourhood

    Full text link
    The direct detection of dark matter on Earth depends crucially on its density and its velocity distribution on a milliparsec scale. Conventional N-body simulations are unable to access this scale, making the development of other approaches necessary. In this paper, we apply the method developed in Fantin et al. 2008 to a cosmologically-based merger tree, transforming it into a useful instrument to reproduce and analyse the merger history of a Milky Way-like system. The aim of the model is to investigate the implications of any ultra-fine structure for the current and next generation of directional dark matter detectors. We find that the velocity distribution of a Milky Way-like Galaxy is almost smooth, due to the overlap of many streams of particles generated by multiple mergers. Only the merger of a 10^10 Msun analyse can generate significant features in the ultra-local velocity distribution, detectable at the resolution attainable by current experiments.Comment: 9 pages, 6 figures, accepted for publication in MNRA

    The rates and modes of gas accretion on to galaxies and their gaseous haloes

    Get PDF
    (Abridged) We study the rate at which gas accretes onto galaxies and haloes and investigate whether the accreted gas was shocked to high temperatures before reaching a galaxy. For this purpose we use a suite of large cosmological, hydrodynamical simulations from the OWLS project. We improve on previous work by considering a wider range of halo masses and redshifts, by distinguishing accretion onto haloes and galaxies, by including important feedback processes, and by comparing simulations with different physics. The specific rate of gas accretion onto haloes is, like that for dark matter, only weakly dependent on halo mass. For halo masses Mhalo>>10^11 Msun it is relatively insensitive to feedback processes. In contrast, accretion rates onto galaxies are determined by radiative cooling and by outflows driven by supernovae and active galactic nuclei. Galactic winds increase the halo mass at which the central galaxies grow the fastest by about two orders of magnitude to Mhalo~10^12 Msun. Gas accretion is bimodal, with maximum past temperatures either of order the virial temperature or <~10^5 K. The fraction of gas accreted on to haloes in the hot mode is insensitive to feedback and metal-line cooling. It increases with decreasing redshift, but is mostly determined by halo mass, increasing gradually from less than 10% for ~10^11 Msun to greater than 90% at 10^13 Msun. In contrast, for accretion onto galaxies the cold mode is always significant and the relative contributions of the two accretion modes are more sensitive to feedback and metal-line cooling. The majority of stars present in any mass halo at any redshift were formed from gas accreted in the cold mode, although the hot mode contributes typically over 10% for Mhalo>~10^11 Msun. Galaxies, but not necessarily their gaseous haloes, are predominantly fed by gas that did not experience an accretion shock when it entered the host halo.Comment: Accepted for publication in MNRAS, 23 pages and 18 figures. Revised version: minor change

    Sunyaev-Zel'dovich clusters in millennium gas simulations

    Get PDF
    Large surveys using the Sunyaev–Zel’dovich (SZ) effect to find clusters of galaxies are now starting to yield large numbers of systems out to high redshift, many of which are new dis- coveries. In order to provide theoretical interpretation for the release of the full SZ cluster samples over the next few years, we have exploited the large-volume Millennium gas cosmo- logical N-body hydrodynamics simulations to study the SZ cluster population at low and high redshift, for three models with varying gas physics. We confirm previous results using smaller samplesthattheintrinsic(spherical)Y500–M500relationhasverylittlescatter(σlog10Y ≃0.04), is insensitive to cluster gas physics and evolves to redshift 1 in accordance with self-similar expectations. Our preheating and feedback models predict scaling relations that are in excel- lent agreement with the recent analysis from combined Planck and XMM–Newton data by the Planck Collaboration. This agreement is largely preserved when r500 and M500 are derived using thehydrostaticmassproxy,YX,500,albeitwithsignificantlyreducedscatter(σlog10Y ≃0.02),a result that is due to the tight correlation between Y500 and YX,500. Interestingly, this assumption also hides any bias in the relation due to dynamical activity. We also assess the importance of projection effects from large-scale structure along the line of sight, by extracting cluster Y500 values from 50 simulated 5 × 5-deg2 sky maps. Once the (model-dependent) mean signal is subtracted from the maps we find that the integrated SZ signal is unbiased with respect to the underlying clusters, although the scatter in the (cylindrical) Y500–M500 relation increases in the preheating case, where a significant amount of energy was injected into the intergalactic medium at high redshift. Finally, we study the hot gas pressure profiles to investigate the origin of the SZ signal and find that the largest contribution comes from radii close to r500 in all cases. The profiles themselves are well described by generalized Navarro, Frenk & White profiles but there is significant cluster-to-cluster scatter. In conclusion, our results support the notion that Y500 is a robust mass proxy for use in cosmological analyses with clusters

    Dwarf galaxy formation with H2-regulated star formation

    Full text link
    We describe cosmological galaxy formation simulations with the adaptive mesh refinement code Enzo that incorporate a star formation prescription regulated by the local abundance of molecular hydrogen. We show that this H2-regulated prescription leads to a suppression of star formation in low mass halos (M_h < ~10^10 M_sun) at z>4, alleviating some of the dwarf galaxy problems faced by theoretical galaxy formation models. H2 regulation modifies the efficiency of star formation of cold gas directly, rather than indirectly reducing the cold gas content with "supernova feedback". We determine the local H2 abundance in our most refined grid cells (76 proper parsec in size at z=4) by applying the model of Krumholz, McKee, & Tumlinson, which is based on idealized 1D radiative transfer calculations of H2 formation-dissociation balance in ~100 pc atomic--molecular complexes. Our H2-regulated simulations are able to reproduce the empirical (albeit lower z) Kennicutt-Schmidt relation, including the low Sigma_gas cutoff due to the transition from atomic to molecular phase and the metallicity dependence thereof, without the use of an explicit density threshold in our star formation prescription. We compare the evolution of the luminosity function, stellar mass density, and star formation rate density from our simulations to recent observational determinations of the same at z=4-8 and find reasonable agreement between the two.Comment: replaced with version published in Ap

    A Census of Baryons and Dark Matter in an Isolated, Milky Way-sized Elliptical Galaxy

    Get PDF
    We present a study of the dark and luminous matter in the isolated elliptical galaxy NGC720, based on deep X-ray observations made with Chandra and Suzaku. The gas is reliably measured to ~R2500, allowing us to place good constraints on the enclosed mass and baryon fraction (fb) within this radius (M2500=1.6e12+/-0.2e12 Msun, fb(2500)=0.10+/-0.01; systematic errors are <~20%). The data indicate that the hot gas is close to hydrostatic, which is supported by good agreement with a kinematical analysis of the dwarf satellite galaxies. We confirm a dark matter (DM) halo at ~20-sigma. Assuming an NFW DM profile, our physical model for the gas distribution enables us to obtain meaningful constraints at scales larger than R2500, revealing that most of the baryons are in the hot gas. We find that fb within Rvir is consistent with the Cosmological value, confirming theoretical predictions that a ~Milky Way-mass (Mvir=3.1e12+/-0.4e12 Msun) galaxy can sustain a massive, quasi-hydrostatic gas halo. While fb is higher than the cold baryon fraction typically measured in similar-mass spiral galaxies, both the gas fraction (fg) and fb in NGC720 are consistent with an extrapolation of the trends with mass seen in massive galaxy groups and clusters. After correcting for fg, the entropy profile is close to the self-similar prediction of gravitational structure formation simulations, as observed in galaxy clusters. Finally, we find a strong heavy metal abundance gradient in the ISM similar to those observed in massive galaxy groups.Comment: 23 pages, 13 figures, 4 tables. Accepted for publication in the Astrophysical Journal. Minor modifications to match accepted version. Conclusions unchange

    The Role of Dissipation in the Scaling Relations of Cosmological Merger Remnants

    Full text link
    There are strong correlations between the three structural properties of elliptical galaxies -- stellar mass, velocity dispersion and size -- in the form of a tight "fundamental plane" and a "scaling relation" between each pair. Major mergers of disk galaxies are assumed to be a mechanism for producing ellipticals, but semi-analytic galaxy formation models (SAM) have encountered apparent difficulties in reproducing the observed slope and scatter of the size-mass relation. We study the scaling relations of merger remnants using progenitor properties from two SAMs. We apply a simple merger model that includes gas dissipation and star formation based on theoretical considerations and simulations. Combining the SAMs and the merger model allows calculation of the structural properties of the remnants of major mergers that enter the population of elliptical galaxies at a given redshift. Without tuning the merger model parameters for each SAM, the results roughly match the slope and scatter in the observed scaling relations and their evolution in the redshift range z=0−3z=0-3. Within this model, the observed scaling relations, including the tilt of the fundamental plane relative to the virial plane, result primarily from the decrease of gas fraction with increasing progenitor mass. The scatter in the size-mass relation of the remnants is reduced from that of the progenitors because of a correlation between progenitor size and gas fraction at a given mass.Comment: in pres

    The Atacama Cosmology Telescope: Sunyaev Zel'dovich Selected Galaxy Clusters at 148 GHz in the 2008 Survey

    Full text link
    We report on twenty-three clusters detected blindly as Sunyaev-Zel'dovich (SZ) decrements in a 148 GHz, 455 square-degree map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL J0102-4915, with a redshift of 0.75 (photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure. The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6x10^14 solar masses referenced to the cluster volume characterized by five hundred times the critical density. The Compton y -- X-ray luminosity mass comparison for the eleven best detected clusters visually agrees with both self-similar and non-adiabatic, simulation-derived scaling laws.Comment: 13 pages, 7 figures, Accepted for publication in Ap

    Cosmology at Low Frequencies: The 21 cm Transition and the High-Redshift Universe

    Get PDF
    Observations of the high-redshift Universe with the 21 cm hyperfine line of neutral hydrogen promise to open an entirely new window onto the early phases of cosmic structure formation. Here we review the physics of the 21 cm transition, focusing on processes relevant at high redshifts, and describe the insights to be gained from such observations. These include measuring the matter power spectrum at z~50, observing the formation of the cosmic web and the first luminous sources, and mapping the reionization of the intergalactic medium. The epoch of reionization is of particular interest, because large HII regions will seed substantial fluctuations in the 21 cm background. We also discuss the experimental challenges involved in detecting this signal, with an emphasis on the Galactic and extragalactic foregrounds. These increase rapidly toward low frequencies and are especially severe for the highest redshift applications. Assuming that these difficulties can be overcome, the redshifted 21 cm line will offer unique insight into the high-redshift Universe, complementing other probes but providing the only direct, three-dimensional view of structure formation from z~200 to z~6.Comment: extended review accepted by Physics Reports, 207 pages, 44 figures (some low resolution); version with high resolution figures available at http://pantheon.yale.edu/~srf28/21cm/index.htm; minor changes to match published versio
    • 

    corecore