26 research outputs found

    Id2 complexes with the SNAG domain of Snai1 inhibiting Snai1-mediated repression of integrin beta4

    Get PDF
    The epithelial-mesenchymal transition (EMT) is a fundamental process that underlies development and cancer. Although the EMT involves alterations in the expression of specific integrins that mediate stable adhesion to the basement membrane, such as alpha6beta4, the mechanisms involved are poorly understood. Here, we report that Snai1 inhibits beta4 transcription by increasing repressive histone modification (trimethylation of histone H3 at K27 [H3K27Me3]). Surprisingly, Snai1 is expressed and localized in the nucleus in epithelial cells, but it does not repress beta4. We resolved this paradox by discovering that Id2 complexes with the SNAG domain of Snai1 on the beta4 promoter and constrains the repressive function of Snai1. Disruption of the complex by depleting Id2 resulted in Snai1-mediated beta4 repression with a concomitant increase in H3K27Me3 modification on the beta4 promoter. These findings establish a novel function for Id2 in regulating Snai1 that has significant implications for the regulation of epithelial gene expression

    Neuropilin-2 promotes branching morphogenesis in the mouse mammary gland

    Get PDF
    Although the neuropilins were characterized as semaphorin receptors that regulate axon guidance, they also function as vascular endothelial growth factor (VEGF) receptors and contribute to the development of other tissues. Here, we assessed the role of NRP2 in mouse mammary gland development based on our observation that NRP2 is expressed preferentially in the terminal end buds of developing glands. A floxed NRP2 mouse was bred with an MMTV-Cre strain to generate a mammary gland-specific knockout of NRP2. MMTV-Cre;NRP2(loxP/loxP) mice exhibited significant defects in branching morphogenesis and ductal outgrowth compared with either littermate MMTV-Cre;NRP2(+/loxP) or MMTV-Cre mice. Mechanistic insight into this morphological defect was obtained from a mouse mammary cell line in which we observed that VEGF(165), an NRP2 ligand, induces branching morphogenesis in 3D cultures and that branching is dependent upon NRP2 as shown using shRNAs and a function-blocking antibody. Epithelial cells in the mouse mammary gland express VEGF, supporting the hypothesis that this NRP2 ligand contributes to mammary gland morphogenesis. Importantly, we demonstrate that VEGF and NRP2 activate focal adhesion kinase (FAK) and promote FAK-dependent branching morphogenesis in vitro. The significance of this mechanism is substantiated by our finding that FAK activation is diminished significantly in developing MMTV-Cre;NRP2(loxP/loxP) mammary glands compared with control glands. Together, our data reveal a VEGF/NRP2/FAK signaling axis that is important for branching morphogenesis and mammary gland development. In a broader context, our data support an emerging hypothesis that directional outgrowth and branching morphogenesis in a variety of tissues are influenced by signals that were identified initially for their role in axon guidance

    Regulated splicing of the alpha6 integrin cytoplasmic domain determines the fate of breast cancer stem cells

    Get PDF
    Although the alpha6beta1 integrin has been implicated in the function of breast and other cancer stem cells (CSCs), little is known about its regulation and relationship to mechanisms involved in the genesis of CSCs. We report that a CD44(high)/CD24(low) population, enriched for CSCs, is comprised of distinct epithelial and mesenchymal populations that differ in expression of the two alpha6 cytoplasmic domain splice variants: alpha6A and alpha6B. alpha6Bbeta1 expression defines the mesenchymal population and is necessary for CSC function, a function that cannot be executed by alpha6A integrins. The generation of alpha6Bbeta1 is tightly controlled and occurs as a consequence of an autocrine vascular endothelial growth factor (VEGF) signaling that culminates in the transcriptional repression of a key RNA-splicing factor. These data alter our understanding of how alpha6beta1 contributes to breast cancer, and they resolve ambiguities regarding the use of total alpha6 (CD49f) expression as a biomarker for CSCs

    GLI1 regulates a novel neuropilin-2/alpha6beta1 integrin based autocrine pathway that contributes to breast cancer initiation

    Get PDF
    The characterization of cells with tumour initiating potential is significant for advancing our understanding of cancer and improving therapy. Aggressive, triple-negative breast cancers (TNBCs) are enriched for tumour-initiating cells (TICs). We investigated that hypothesis that VEGF receptors expressed on TNBC cells mediate autocrine signalling that contributes to tumour initiation. We discovered the VEGF receptor neuropilin-2 (NRP2) is expressed preferentially on TICs, involved in the genesis of TNBCs and necessary for tumour initiation. The mechanism by which NRP2 signalling promotes tumour initiation involves stimulation of the alpha6beta1 integrin, focal adhesion kinase-mediated activation of Ras/MEK signalling and consequent expression of the Hedgehog effector GLI1. GLI1 also induces BMI-1, a key stem cell factor, and it enhances NRP2 expression and the function of alpha6beta1, establishing an autocrine loop. NRP2 can be targeted in vivo to retard tumour initiation. These findings reveal a novel autocrine pathway involving VEGF/NRP2, alpha6beta1 and GLI1 that contributes to the initiation of TNBC. They also support the feasibility of NRP2-based therapy for the treatment of TNBC that targets and impedes the function of TICs. of EMBO

    A laminin 511 matrix is regulated by TAZ and functions as the ligand for the alpha6Bbeta1 integrin to sustain breast cancer stem cells

    Get PDF
    Understanding how the extracellular matrix impacts the function of cancer stem cells (CSCs) is a significant but poorly understood problem. We report that breast CSCs produce a laminin (LM) 511 matrix that promotes self-renewal and tumor initiation by engaging the alpha6Bbeta1 integrin and activating the Hippo transducer TAZ. Although TAZ is important for the function of breast CSCs, the mechanism is unknown. We observed that TAZ regulates the transcription of the alpha5 subunit of LM511 and the formation of a LM511 matrix. These data establish a positive feedback loop involving TAZ and LM511 that contributes to stemness in breast cancer

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    IMP3 Protein Promotes Chemoresistance in Breast Cancer Cells by Regulating Breast Cancer Resistance Protein (ABCG2) Expression

    No full text
    IMP3, a member of a family of insulin-like growth factor II (IGF-II) mRNA-binding proteins (IMPs), is expressed preferentially in triple-negative breast cancers, which are resistant to many chemotherapeutics. However, the mechanisms by which it impacts breast cancer have not been elucidated. We hypothesized a role for IMP3 in chemoresistance based on these observations. Depletion of IMP3 expression in triple-negative breast cancer cells increased their sensitivity to doxorubicin and mitoxantrone significantly but not to taxol. Given that doxorubicin and mitoxantrone are effluxed by breast cancer resistance protein (BCRP), we assessed whether IMP3 regulates BCRP. The data obtained demonstrate that IMP3 binds to BCRP mRNA and regulates BCRP expression. These findings are significant because they provide insight into the mechanism by which IMP3 contributes to aggressive cancers, and they highlight the potential for targeting this mRNA-binding protein for the clinical management of cancer

    Epithelial-mesenchymal transition and colorectal cancer: gaining insights into tumor progression using LIM 1863 cells

    No full text
    In addition to allowing epithelial cells to escape the structural constraints imposed by tissue architecture and adopt a phenotype more amenable to cell movement, it is now recognized that the epithelial-mesenchymal transition (EMT) may also represent a critical component permitting the progression of carcinomas towards invasive and metastatic disease. However, data supporting the actual occurrence of EMT in specific solid tumors and its relevance to the process of progression of these cancers has been scant. Despite an extensive knowledge of the genetic basis for colorectal cancer, the translation of this information into effective treatments has been limited. Clearly, there is a desperate need for new and improved therapies and since the switch to a metastatic phenotype is critical for outcome, it is of paramount importance to elucidate the biology that underlies the progression of this disease. Thus, the unique LIM 1863 model for studying the EMT of colorectal carcinoma has been used to both substantiate the importance of the transition for this cancer type and to identify molecular events that contribute to disease progression. Importantly, it has emerged that not only does EMT enhance migratory capacity, but also elicits additional selective advantages to colonic tumor cells. Specifically, the acquisition of autocrine growth factor signaling loops, mechanisms to evade apoptosis, and expression of specific integrins allowing invasive cells to interact with interstitial matrices and sustain activation of TGF-beta combine to provide a compelling new biochemical framework for understanding how EMT contributes to tumor evolution

    Estrogen receptor beta sustains epithelial differentiation by regulating prolyl hydroxylase 2 transcription

    No full text
    Estrogen receptor beta (ERbeta) promotes the degradation of hypoxia inducible factor 1alpha (HIF-1alpha), which contributes to the ability of this hormone receptor to sustain the differentiation of epithelial and carcinoma cells. Although the loss of ERbeta and consequent HIF-1 activation occur in prostate cancer with profound consequences, the mechanism by which ERbeta promotes the degradation of HIF-1alpha is unknown. We report that ERbeta regulates the ligand (3beta-adiol)-dependent transcription of prolyl hydroxylase 2 (PHD2) also known as Egl nine homolog 1 (EGLN1), a 2-oxoglutarate-dependent dioxygenase that hydroxylates HIF-1alpha and targets it for recognition by the von Hippel-Lindau tumor suppressor and consequent degradation. ERbeta promotes PHD2 transcription by interacting with a unique estrogen response element in the 5\u27 UTR of the PHD2 gene that functions as an enhancer. PHD2 itself is critical for maintaining epithelial differentiation. Loss of PHD2 expression or inhibition of its function results in dedifferentiation with characteristics of an epithelial-mesenchymal transition, and exogenous PHD2 expression in dedifferentiated cells can restore an epithelial phenotype. Moreover, expression of HIF-1alpha in cells that express PHD2 does not induce dedifferentiation but expression of HIF-1alpha containing mutations in the proline residues that are hydroxylated by PHD2 induces dedifferentiation. These data describe a unique mechanism for the regulation of HIF-1alpha stability that involves ERbeta-mediated transcriptional regulation of PHD2 and they highlight an unexpected role for PHD2 in maintaining epithelial differentiation

    Regulation of beta 4-integrin expression by epigenetic modifications in the mammary gland and during the epithelial-to-mesenchymal transition

    No full text
    The beta 4 integrin is expressed in epithelial cells, a few other cell types and in some carcinomas. Despite this restricted expression pattern and the functional importance of beta 4 integrin in epithelial and carcinoma biology, little is known about how its expression is regulated. Here, we assessed the epigenetic regulation of beta 4 integrin based on the presence of a large CpG island in the beta 4-integrin gene promoter. We separated basal (beta 4+) and luminal (beta 4-) epithelial cells from the mammary glands of K14-eGFP mice and demonstrated that the beta 4-integrin promoter is unmethylated in basal cells and methylated in luminal cells. We also observed that expression of beta 4 integrin and E-cadherin is lost during the epithelial-to-mesenchymal transition (EMT) of mammary gland cells induced by transforming growth factor beta (TGFbeta), which is coincident with de novo DNA methylation, a decrease in active histone modifications (H3K9Ac and H3K4me3) and an increase in the repressive histone modification H3K27me3. Furthermore, TGFbeta withdrawal promotes a mesenchymal-to-epithelial transition (MET) and triggers the re-expression of beta 4 integrin and E-cadherin. Intriguingly, demethylation at either promoter is not obligatory for transcriptional reactivation after TGFbeta withdrawal. However, both H3K9Ac and H3K4me3 modifications are restored during the MET, and H3K27me3 is reduced, strongly suggesting that reversible histone modifications rather than DNA demethylation are the predominant factors in reactivating expression of these genes. Our data indicate that complex epigenetic modifications contribute to the regulation of the beta 4 integrin and E-cadherin
    corecore