163 research outputs found
Characterization of a reproductively active Queen Conch, Strombus gigas, aggregation in the nearshore waters of south Florida [Poster abstract]
Preliminary comparisons between reef fish assemblages on vessel reefs and natural substrate in depths of 70 – 95 meters [abstract of poster presentation]
A Comparison of reef fish assemblages on the east and west sides of central Eleuthera, Bahamas [abstract of poster presentation]
The Quantum McKay Correspondence for polyhedral singularities
Let G be a polyhedral group, namely a finite subgroup of SO(3). Nakamura's
G-Hilbert scheme provides a preferred Calabi-Yau resolution Y of the polyhedral
singularity C^3/G. The classical McKay correspondence describes the classical
geometry of Y in terms of the representation theory of G. In this paper we
describe the quantum geometry of Y in terms of R, an ADE root system associated
to G. Namely, we give an explicit formula for the Gromov-Witten partition
function of Y as a product over the positive roots of R. In terms of counts of
BPS states (Gopakumar-Vafa invariants), our result can be stated as a
correspondence: each positive root of R corresponds to one half of a genus zero
BPS state. As an application, we use the crepant resolution conjecture to
provide a full prediction for the orbifold Gromov-Witten invariants of [C^3/G].Comment: Introduction rewritten. Issue regarding non-uniqueness of conifold
resolution clarified. Version to appear in Inventione
Bailing Out the Milky Way: Variation in the Properties of Massive Dwarfs Among Galaxy-Sized Systems
Recent kinematical constraints on the internal densities of the Milky Way's
dwarf satellites have revealed a discrepancy with the subhalo populations of
simulated Galaxy-scale halos in the standard CDM model of hierarchical
structure formation. This has been dubbed the "too big to fail" problem, with
reference to the improbability of large and invisible companions existing in
the Galactic environment. In this paper, we argue that both the Milky Way
observations and simulated subhalos are consistent with the predictions of the
standard model for structure formation. Specifically, we show that there is
significant variation in the properties of subhalos among distinct host halos
of fixed mass and suggest that this can reasonably account for the deficit of
dense satellites in the Milky Way. We exploit well-tested analytic techniques
to predict the properties in a large sample of distinct host halos with a
variety of masses spanning the range expected of the Galactic halo. The
analytic model produces subhalo populations consistent with both Via Lactea II
and Aquarius, and our results suggest that natural variation in subhalo
properties suffices to explain the discrepancy between Milky Way satellite
kinematics and these numerical simulations. At least ~10% of Milky Way-sized
halos host subhalo populations for which there is no "too big to fail" problem,
even when the host halo mass is as large as M_host = 10^12.2 h^-1 M_sun.
Follow-up studies consisting of high-resolution simulations of a large number
of Milky Way-sized hosts are necessary to confirm our predictions. In the
absence of such efforts, the "too big to fail" problem does not appear to be a
significant challenge to the standard model of hierarchical formation.
[abridged]Comment: 12 pages, 3 figures; accepted by JCAP. Replaced with published
versio
Observing the First Stars and Black Holes
The high sensitivity of JWST will open a new window on the end of the
cosmological dark ages. Small stellar clusters, with a stellar mass of several
10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun
should be directly detectable out to redshift z=10, and individual supernovae
(SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible
beyond this redshift. Dense primordial gas, in the process of collapsing from
large scales to form protogalaxies, may also be possible to image through
diffuse recombination line emission, possibly even before stars or BHs are
formed. In this article, I discuss the key physical processes that are expected
to have determined the sizes of the first star-clusters and black holes, and
the prospect of studying these objects by direct detections with JWST and with
other instruments. The direct light emitted by the very first stellar clusters
and intermediate-mass black holes at z>10 will likely fall below JWST's
detection threshold. However, JWST could reveal a decline at the faint-end of
the high-redshift luminosity function, and thereby shed light on radiative and
other feedback effects that operate at these early epochs. JWST will also have
the sensitivity to detect individual SNe from beyond z=10. In a dedicated
survey lasting for several weeks, thousands of SNe could be detected at z>6,
with a redshift distribution extending to the formation of the very first stars
at z>15. Using these SNe as tracers may be the only method to map out the
earliest stages of the cosmic star-formation history. Finally, we point out
that studying the earliest objects at high redshift will also offer a new
window on the primordial power spectrum, on 100 times smaller scales than
probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and
Concurrent Facilities", Astrophysics & Space Science Library, Eds. H.
Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Fish colonization of a newly deployed vessel-reef off southeast Florida: preliminary results [abstract]
Clustering Algorithms: Their Application to Gene Expression Data
Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and iden-tify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure
- …
