29 research outputs found
Cell Encapsulation in Sub-mm Sized Gel Modules Using Replica Molding
For many types of cells, behavior in two-dimensional (2D) culture differs from that in three-dimensional (3D) culture. Among biologists, 2D culture on treated plastic surfaces is currently the most popular method for cell culture. In 3D, no analogous standard method—one that is similarly convenient, flexible, and reproducible—exists. This paper describes a soft-lithographic method to encapsulate cells in 3D gel objects (modules) in a variety of simple shapes (cylinders, crosses, rectangular prisms) with lateral dimensions between 40 and 1000 μm, cell densities of 105 – 108 cells/cm3, and total volumes between 1×10−7 and 8×10−4 cm3. By varying (i) the initial density of cells at seeding, and (ii) the dimensions of the modules, the number of cells per module ranged from 1 to 2500 cells. Modules were formed from a range of standard biopolymers, including collagen, Matrigel™, and agarose, without the complex equipment often used in encapsulation. The small dimensions of the modules allowed rapid transport of nutrients by diffusion to cells at any location in the module, and therefore allowed generation of modules with cell densities near to those of dense tissues (108 – 109 cells/cm3). This modular method is based on soft lithography and requires little special equipment; the method is therefore accessible, flexible, and well suited to (i) understanding the behavior of cells in 3D environments at high densities of cells, as in dense tissues, and (ii) developing applications in tissue engineering
Multizone Paper Platform for 3D Cell Cultures
In vitro 3D culture is an important model for tissues in
vivo. Cells in different locations of 3D tissues are
physiologically different, because they are exposed to different concentrations
of oxygen, nutrients, and signaling molecules, and to other environmental
factors (temperature, mechanical stress, etc). The majority of high-throughput
assays based on 3D cultures, however, can only detect the
average behavior of cells in the whole 3D construct.
Isolation of cells from specific regions of 3D cultures is possible, but relies
on low-throughput techniques such as tissue sectioning and micromanipulation.
Based on a procedure reported previously (“cells-in-gels-in-paper”
or CiGiP), this paper describes a simple method for culture of arrays of thin
planar sections of tissues, either alone or stacked to create more complex 3D
tissue structures. This procedure starts with sheets of paper patterned with
hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells
suspended in extracellular matrix (ECM) gel onto the patterned paper creates an
array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose
fibers) containing cells. Stacking the sheets with zones aligned on top of one
another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D
culture, by peeling apart the sheets of paper, “sections” all 96
cultures at once. It is, thus, simple to isolate 200-micron-thick
cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D
cultures are assembled from multiple layers, the number of cells plated
initially in each layer determines the spatial distribution of cells in the
stacked 3D cultures. This capability made it possible to compare the growth of
3D tumor models of different spatial composition, and to examine the migration
of cells in these structures
Engineering of microfabricated ion traps and integration of advanced on-chip features
Atomic ions trapped in electromagnetic potentials have long been used for fundamental studies in quantum physics. Over the past two decades, trapped ions have been successfully used to implement technologies such as quantum computing, quantum simulation, atomic clocks, mass spectrometers and quantum sensors. Advanced fabrication techniques, taken from other established or emerging disciplines, are used to create new, reliable ion-trap devices aimed at large-scale integration and compatibility with commercial fabrication. This Technical Review covers the fundamentals of ion trapping before discussing the design of ion traps for the aforementioned applications. We overview the current microfabrication techniques and the various considerations behind the choice of materials and processes. Finally, we discuss current efforts to include advanced, on-chip features in next-generation ion traps