7 research outputs found

    elongated mesocotyl1, a phytochrome-deficient mutant of maize

    No full text
    To begin the functional dissection of light signal transduction pathways of maize (Zea mays), we have identified and characterized the light-sensing mutant elm1 (elongated mesocotyl1). Seedlings homozygous for elm1 are pale green, show pronounced elongation of the mesocotyl, and fail to de-etiolate under red or far-red light. Etiolated elm1 mutants contain no spectrally active phytochrome and do not deplete levels of phytochrome A after red-light treatment. High-performance liquid chromatography analyses show that elm1 mutants are unable to convert biliverdin IXalpha to 3Z-phytochromobilin, preventing synthesis of the phytochrome chromophore. Despite the impairment of the phytochrome photoreceptors, elm1 mutants can be grown to maturity in the field. Mature plants retain aspects of the seedling phenotype and flower earlier than wild-type plants under long days. Thus, the elm1 mutant of maize provides the first direct evidence for phytochrome-mediated modulation of flowering time in this agronomically important species

    The B73 Maize Genome: Complexity, Diversity, and Dynamics

    No full text
    We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize
    corecore