308 research outputs found

    Optimal universal quantum cloning and state estimation

    Full text link
    We derive a tight upper bound for the fidelity of a universal N to M qubit cloner, valid for any M \geq N, where the output of the cloner is required to be supported on the symmetric subspace. Our proof is based on the concatenation of two cloners and the connection between quantum cloning and quantum state estimation. We generalise the operation of a quantum cloner to mixed and/or entangled input qubits described by a density matrix supported on the symmetric subspace of the constituent qubits. We also extend the validity of optimal state estimation methods to inputs of this kind.Comment: 4 pages (RevTeX

    Quantum Cloning of Mixed States in Symmetric Subspace

    Full text link
    Quantum cloning machine for arbitrary mixed states in symmetric subspace is proposed. This quantum cloning machine can be used to copy part of the output state of another quantum cloning machine and is useful in quantum computation and quantum information. The shrinking factor of this quantum cloning achieves the well-known upper bound. When the input is identical pure states, two different fidelities of this cloning machine are optimal.Comment: Revtex, 4 page

    Bounds for state-dependent quantum cloning

    Get PDF
    Due to the no-cloning theorem, the unknown quantum state can only be cloned approximately or exactly with some probability. There are two types of cloners: universal and state-dependent cloner. The optimal universal cloner has been found and could be viewed as a special state-dependent quantum cloner which has no information about the states. In this paper, we investigate the state-dependent cloning when the state-set contains more than two states. We get some bounds of the global fidelity for these processes. This method is not dependent on the number of the states contained in the state-set. It is also independent of the numbers of copying.Comment: 13 pages, 1 figure, to appear in Phys. Rev.

    Cloning a real d-dimensional quantum state on the edge of the no-signaling condition

    Get PDF
    We investigate a new class of quantum cloning machines that equally duplicate all real states in a Hilbert space of arbitrary dimension. By using the no-signaling condition, namely that cloning cannot make superluminal communication possible, we derive an upper bound on the fidelity of this class of quantum cloning machines. Then, for each dimension d, we construct an optimal symmetric cloner whose fidelity saturates this bound. Similar calculations can also be performed in order to recover the fidelity of the optimal universal cloner in d dimensions.Comment: 6 pages RevTex, 1 encapuslated Postscript figur

    Extremal equation for optimal completely-positive maps

    Full text link
    We derive an extremal equation for optimal completely-positive map which most closely approximates a given transformation between pure quantum states. Moreover, we also obtain an upper bound on the maximal mean fidelity that can be attained by the optimal approximate transformation. The developed formalism is applied to universal-NOT gate, quantum cloning machines, quantum entanglers, and qubit theta-shifter.Comment: REVTeX, 7 pages, 2 figures, important reference adde

    Optimal N-to-M Cloning of Quantum Coherent States

    Get PDF
    The cloning of continuous quantum variables is analyzed based on the concept of Gaussian cloning machines, i.e., transformations that yield copies that are Gaussian mixtures centered on the state to be copied. The optimality of Gaussian cloning machines that transform N identical input states into M output states is investigated, and bounds on the fidelity of the process are derived via a connection with quantum estimation theory. In particular, the optimal N-to-M cloning fidelity for coherent states is found to be equal to MN/(MN+M-N).Comment: 3 pages, RevTe

    Universal Quantum Cloning in Cavity QED

    Get PDF
    We propose an implementation of an universal quantum cloning machine [UQCM, Hillery and Buzek, Phys. Rev. A {\bf 56}, 3446 (1997)] in a Cavity Quantum Electrodynamics (CQED) experiment. This UQCM acts on the electronic states of atoms that interact with the electromagnetic field of a high QQ cavity. We discuss here the specific case of the 1→21 \to 2 cloning process using either a one- or a two-cavity configuration

    Quantum cloning and the capacity of the Pauli channel

    Full text link
    A family of quantum cloning machines is introduced that produce two approximate copies from a single quantum bit, while the overall input-to-output operation for each copy is a Pauli channel. A no-cloning inequality is derived, describing the balance between the quality of the two copies. This also provides an upper bound on the quantum capacity of the Pauli channel with probabilities pxp_x, pyp_y and pzp_z. The capacity is shown to be vanishing if (px,py,pz)(\sqrt{p_x},\sqrt{p_y},\sqrt{p_z}) lies outside an ellipsoid whose pole coincides with the depolarizing channel that underlies the universal cloning machine.Comment: 5 pages RevTeX, 3 Postscript figure

    Approximate quantum cloning and the impossibility of superluminal information transfer

    Full text link
    We show that nonlocality of quantum mechanics cannot lead to superluminal transmission of information, even if most general local operations are allowed, as long as they are linear and trace preserving. In particular, any quantum mechanical approximate cloning transformation does not allow signalling. On the other hand, the no-signalling constraint on its own is not sufficient to prevent a transformation from surpassing the known cloning bounds. We illustrate these concepts on the basis of some examples.Comment: 4 pages, 1eps figur
    • …
    corecore