63 research outputs found
Experimental characterization of Gaussian quantum communication channels
We present a full experimental characterization of continuous variable
quantum communication channels established by shared entanglement together with
local operations and classical communication. The resulting teleportation
channel was fully characterized by measuring all elements of the covariance
matrix of the shared two-mode squeezed Gaussian state. From the experimental
data we determined the lower bound to the quantum channel capacity, the
teleportation fidelity of coherent states and the logarithmic negativity and
the purity of the shared state. Additionally, a positive secret key rate was
obtained for two of the established channels.Comment: 9 pages, 4 figures, submitted to Physical Review
Scheme for the implementation of a universal quantum cloning machine via cavity-assisted atomic collisions in cavity QED
We propose a scheme to implement the universal quantum cloning
machine of Buzek et.al [Phys. Rev.A 54, 1844(1996)] in the context of cavity
QED. The scheme requires cavity-assisted collision processes between atoms,
which cross through nonresonant cavity fields in the vacuum states. The cavity
fields are only virtually excited to face the decoherence problem. That's why
the requirements on the cavity quality factor can be loosened.Comment: to appear in PR
Immune Checkpoint Profiling in Humanized Breast Cancer Mice Revealed Cell-Specific LAG-3/PD-1/TIM-3 Co-Expression and Elevated PD-1/TIM-3 Secretion
Checkpoint blockade is particularly based on PD-1/PD-L1-inhibiting antibodies. However, an efficient immunological tumor defense can be blocked not only by PD-(L)1 but also by the presence of additional immune checkpoint molecules. Here, we investigated the co-expression of several immune checkpoint proteins and the soluble forms thereof (e.g., PD-1, TIM-3, LAG-3, PD-L1, PD-L2 and others) in humanized tumor mice (HTM) simultaneously harboring cell line-derived (JIMT-1, MDA-MB-231, MCF-7) or patient-derived breast cancer and a functional human immune system. We identified tumor-infiltrating T cells with a triple-positive PD-1, LAG-3 and TIM-3 phenotype. While PD-1 expression was increased in both the CD4 and CD8 T cells, TIM-3 was found to be upregulated particularly in the cytotoxic T cells in the MDA-MB-231-based HTM model. High levels of soluble TIM-3 and galectin-9 (a TIM-3 ligand) were detected in the serum. Surprisingly, soluble PD-L2, but only low levels of sPD-L1, were found in mice harboring PD-L1-positive tumors. Analysis of a dataset containing 3039 primary breast cancer samples on the R2 Genomics Analysis Platform revealed increased TIM-3, galectin-9 and LAG-3 expression, not only in triple-negative breast cancer but also in the HER2+ and hormone receptor-positive breast cancer subtypes. These data indicate that LAG-3 and TIM-3 represent additional key molecules within the breast cancer anti-immunity landscape
Devotions for Advent 2022 Canticles of Luke
Each week of this Advent devotional will focus on one of the four Lukan canticles, putting it in its context as well as making connections to other portions of Scripture. At the end of this Advent season, may we, like those who have gone before us, “sing to the Lord, bless his name; tell of his salvation from day to day” (Ps. 96:2).
Many thanks to all the CSL and CTSFW students who contributed devotional reflections. A special note of thanks to my counterpart, Zachary Roll, who organized this effort at Concordia Seminary, St. Louis who has been a joy to work with and to get to know. A final note of thanks to Kim Hosier in the print shop and Rev. Dr. Paul Grime for their aid in completing this devotional booklet.https://scholar.csl.edu/osp/1021/thumbnail.jp
Transgenic Expression of Entire Hepatitis B Virus in Mice Induces Hepatocarcinogenesis Independent of Chronic Liver Injury
Hepatocellular carcinoma (HCC), the third leading cause of cancer deaths worldwide, is most commonly caused by chronic hepatitis B virus (HBV) infection. However, whether HBV plays any direct role in carcinogenesis, other than indirectly causing chronic liver injury by inciting the host immune response, remains unclear. We have established two independent transgenic mouse lines expressing the complete genome of a mutant HBV (“preS2 mutant”) that is found at much higher frequencies in people with HCC than those without. The transgenic mice show evidence of stress in the endoplasmic reticulum (ER) and overexpression of cyclin D1 in hepatocytes. These mice do not show any evidence of chronic liver injury, but by 2 years of age a majority of the male mice develop hepatocellular neoplasms, including HCC. Unexpectedly, we also found a significant increase in hepatocarcinogenesis independent of necroinflammation in a transgenic line expressing the entire wildtype HBV. As in the mutant HBV mice, HCC was found only in aged—2-year-old—mice of the wildtype HBV line. The karyotype in all the three transgenic lines appears normal and none of the integration sites of the HBV transgene in the mice is near an oncogene or tumor suppressor gene. The significant increase of HCC incidence in all the three transgenic lines—expressing either mutant or wildtype HBV—therefore argues strongly that in absence of chronic necroinflammation, HBV can contribute directly to the development of HCC
A survey of the linear-search problem
Reviewer: Lawrence D. Stoneinfo:eu-repo/semantics/publishe
'Wald's Lemma' for Sums of Order Statistics of i.i.d. Random Variables
http://www.jstor.org/stable/1427625info:eu-repo/semantics/publishe
Advanced Immune Cell Profiling by Multiparameter Flow Cytometry in Humanized Patient-Derived Tumor Mice
“Humanized” mice have been widely used for the characterization of human cancer progression and as a powerful preclinical model. Standardization of multicolor phenotyping could help to identify immune cell patterns involved in checkpoint-related complications. Therefore, we applied established protocols for immune cell profiling to our humanized Patient-Derived Xenograft (hPDX) model. hPDX are characterized by the co-existence of a human immune system and a patient-derived tumor transplant. These mice possess a human-like immune system after CD34+ stem cell transplantation while the reconstitution level of the immune system was not related to the quantity of transplanted CD34+ cells. Contamination ≤ 1.2% by CD3+ cells in the hematopoietic stem cell (HSC) transplant did not trigger abnormal T cell maturation. Different B and T cell differentiation stages were identified, as well as regulatory T cells (Tregs) and exhausted T cells that expressed TIGIT, PD-1, or KLRG1. Overall, the application of standardized protocols for the characterization of immune cells using flow cytometry will contribute to a better understanding of immune-oncologic processes
- …