8 research outputs found

    A Transcriptomic Appreciation of Childhood Meningococcal and Polymicrobial Sepsis from a Pro-Inflammatory and Trajectorial Perspective, a Role for Vascular Endothelial Growth Factor A and B Modulation?

    Get PDF
    This study investigated the temporal dynamics of childhood sepsis by analyzing gene expression changes associated with proinflammatory processes. Five datasets, including four meningococcal sepsis shock (MSS) datasets (two temporal and two longitudinal) and one polymicrobial sepsis dataset, were selected to track temporal changes in gene expression. Hierarchical clustering revealed three temporal phases: early, intermediate, and late, providing a framework for understanding sepsis progression. Principal component analysis supported the identification of gene expression trajectories. Differential gene analysis highlighted consistent upregulation of vascular endothelial growth factor A (VEGF-A) and nuclear factor κB1 (NFKB1), genes involved in inflammation, across the sepsis datasets. NFKB1 gene expression also showed temporal changes in the MSS datasets. In the postmortem dataset comparing MSS cases to controls, VEGF-A was upregulated and VEGF-B downregulated. Renal tissue exhibited higher VEGF-A expression compared with other tissues. Similar VEGF-A upregulation and VEGF-B downregulation patterns were observed in the cross-sectional MSS datasets and the polymicrobial sepsis dataset. Hexagonal plots confirmed VEGF-R (VEGF receptor)–VEGF-R2 signaling pathway enrichment in the MSS cross-sectional studies. The polymicrobial sepsis dataset also showed enrichment of the VEGF pathway in septic shock day 3 and sepsis day 3 samples compared with controls. These findings provide unique insights into the dynamic nature of sepsis from a transcriptomic perspective and suggest potential implications for biomarker development. Future research should focus on larger-scale temporal transcriptomic studies with appropriate control groups and validate the identified gene combination as a potential biomarker panel for sepsis

    Advancing sepsis clinical research: harnessing transcriptomics for an omics-based strategy - a comprehensive scoping review

    Get PDF
    Sepsis continues to be recognized as a significant global health challenge across all ages and is characterized by a complex pathophysiology. In this scoping review, PRISMA-ScR guidelines were adhered to, and a transcriptomic methodology was adopted, with the protocol registered on the Open Science Framework. We hypothesized that gene expression analysis could provide a foundation for establishing a clinical research framework for sepsis. A comprehensive search of the PubMed database was conducted with a particular focus on original research and systematic reviews of transcriptomic sepsis studies published between 2012 and 2022. Both coding and non-coding gene expression studies have been included in this review. An effort was made to enhance the understanding of sepsis at the mRNA gene expression level by applying a systems biology approach through transcriptomic analysis. Seven crucial components related to sepsis research were addressed in this study: endotyping (n = 64), biomarker (n = 409), definition (n = 0), diagnosis (n = 1098), progression (n = 124), severity (n = 451), and benchmark (n = 62). These components were classified into two groups, with one focusing on Biomarkers and Endotypes and the other oriented towards clinical aspects. Our review of the selected studies revealed a compelling association between gene transcripts and clinical sepsis, reinforcing the proposed research framework. Nevertheless, challenges have arisen from the lack of consensus in the sepsis terminology employed in research studies and the absence of a comprehensive definition of sepsis. There is a gap in the alignment between the notion of sepsis as a clinical phenomenon and that of laboratory indicators. It is potentially responsible for the variable number of patients within each category. Ideally, future studies should incorporate a transcriptomic perspective. The integration of transcriptomic data with clinical endpoints holds significant potential for advancing sepsis research, facilitating a consensus-driven approach, and enabling the precision management of sepsis

    Traceability and distribution of Neisseria meningitidis DNA in archived post mortem tissue samples from patients with systemic meningococcal disease

    No full text
    Background The pathophysiology and outcome of meningococcal septic shock is closely associated with the plasma level of N. meningitidis lipopolysaccharides (LPS, endotoxin) and the circulating level of meningococcal DNA. The aim of the present study was to quantify the number of N. meningitidis in different formalin-fixed, paraffin-embedded (FFPE) tissue samples and fresh frozen (FF) tissue samples from patients with systemic meningococcal disease (SMD), to explore the distribution of N. meningitidis in the body. Methods DNA in FFPE and FF tissue samples from heart, lungs, liver, kidneys, spleen and brain from patients with meningococcal shock and controls (lethal pneumococcal infection) stored at variable times, were isolated. The bacterial load of N. meningitidis DNA was analyzed using quantitative real-time PCR (qPCR) and primers for the capsule transport A (ctrA) gene (1 copy per N. meningitidis DNA). The human beta-hemoglobin (HBB) gene was quantified to evaluate effect of the storage times (2-28 years) and storage method in archived tissue. Results N. meningitidis DNA was detected in FFPE and FF tissue samples from heart, lung, liver, kidney, and spleen in all patients with severe shock. In FFPE brain, N. meningitidis DNA was only detected in the patient with the highest concentration of LPS in the blood at admission to hospital. The highest levels of N. meningitidis DNA were found in heart tissue (median value 3.6 × 107 copies N. meningitidis DNA/μg human DNA) and lung tissue (median value 3.1 × 107 copies N. meningitidis DNA/μg human DNA) in all five patients. N. meningitidis DNA was not detectable in any of the tissue samples from two patients with clinical meningitis and the controls (pneumococcal infection). The quantity of HBB declined over time in FFPE tissue stored at room temperature, suggesting degradation of DNA. Conclusions High levels of N. meningitidis DNA were detected in the different tissue samples from meningococcal shock patients, particularly in the heart and lungs suggesting seeding and major proliferation of meningococci in these organs during the development of shock, probably contributing to the multiple organ failure. The age of archived tissue samples appear to have an impact on the amount of quantifiable N. meningitidis DNA

    Urine biomarkers give early prediction of acute kidney injury and outcome after out-of-hospital cardiac arrest

    No full text
    Background Post-resuscitation care after out-of-hospital cardiac arrest (OHCA) is challenging due to the threat of organ failure and difficult prognostication. Our aim was to examine whether urine biomarkers could give an early prediction of acute kidney injury (AKI) and outcome. Methods This was a prospective observational study of comatose OHCA patients at Oslo University Hospital Ullevål, Norway. Risk factors were clinical parameters and biomarkers measured in spot urine (cystatin C, neutrophil gelatinase-associated lipocalin (NGAL) and the product of tissue inhibitor of metalloproteinase 2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7)) at admission and day 3. Outcome variables were AKI within 3 days using the Kidney Disease Improving Global Outcomes definition, 6-month mortality, and poor neurological outcome (PNO) defined as cerebral performance category 3–5. Results Among 195 included patients (85 % males, mean age 60 years), 88 (45 %) died, 96 (49 %) had PNO, and 88 (45 %) developed AKI. In univariate analysis, increased urine cystatin C and NGAL concentration sampled at admission and day 3 were independent risk factors for AKI, mortality and PNO. Increased urine TIMP-2 × IGFBP7 levels was associated with AKI only at admission. In multivariate analyses combining clinical parameters and biomarker concentrations, the area under the receiver operating characteristics curve (AuROC) with 95 % confidence interval (CI) were 0.774 (0.700–0.848), 0.812 (0.751–0.873), and 0.819 (0.759–0.878) for AKI, mortality and PNO, respectively. Conclusions In comatose OHCA patients, urine levels of cystatin C and NGAL at admission and day 3 were independent risk factors for AKI, 6-month mortality and PNO. Trial registration Clinicaltrials.gov NCT01239420 . Registered 10 November 2010

    A Transcriptomic Appreciation of Childhood Meningococcal and Polymicrobial Sepsis from a Pro-inflammatory and Trajectorial Perspective, a Role for VEGF-A and VEGF-B Modulation?

    Get PDF
    ABSTRACT: This study investigated the temporal dynamics of childhood sepsis by analyzing gene expression (GE) changes associated with pro-inflammatory processes. Five datasets, including four meningococcal sepsis shock (MSS) datasets (two temporal and two longitudinal) and one polymicrobial sepsis dataset, were selected to track temporal changes in gene expression. Hierarchical clustering revealed three temporal phases: early, intermediate, and late, providing a framework for understanding sepsis progression. Principal Component Analysis (PCA) plots supported the identification of gene expression trajectories. Differential gene analysis highlighted consistent up-regulation of VEGF-A and NFKB1, genes involved in inflammation, across the sepsis datasets. NFKB1 gene expression also showed temporal changes in the MSS datasets. In the post-mortem dataset comparing MSS cases to controls, VEGF-A was up-regulated and VEGF-B down-regulated. Renal tissue exhibited higher VEGF-A expression compared to other tissues. Similar VEGF-A upregulation and VEGF-B downregulation patterns were observed in the cross-sectional MSS datasets and the polymicrobial sepsis dataset. Hexagonal plots confirmed VEGFR-VEGFR2 signaling pathway enrichment in the MSS cross-sectional studies. The polymicrobial sepsis dataset also showed enrichment of the VEGF pathway in septic shock day three and sepsis day three samples compared to controls. These findings provide insights into the dynamic nature of sepsis from a transcriptomic perspective, suggesting potential implications for biomarker development. Future research should focus on larger-scale temporal transcriptomic studies with appropriate control groups and validate the identified gene combination as a potential biomarker panel for sepsis
    corecore