159 research outputs found
Cyano-tryptophans as dual infrared and fluorescence spectroscopic labels to assess structural dynamics in proteins
The steady state and time-resolved fluorescence and infrared (IR) properties of 4- and 5-cyanotryptophan (CNTrp) are investigated and compared, and the tryptophan (Trp) analogs are found to be very attractive to study structural and dynamic properties of proteins. The position of the nitrile substitution as well as the solvent environment influences the spectroscopic properties (solvatochromism). Similar to native Trp, electronic (nanosecond) lifetime and emission spectra are modulated by the environment, making CNTrps attractive fluorescent probes to study the structural dynamics of proteins in complex media. The nitrile absorption in the IR region can provide local structural information as it responds sensitively to changes in electrostatics and hydrogen bond (HB) interactions. Importantly, we find that 4CNTrp exhibits a single absorption in the nitrile stretch region, while the model compound 4CN-indole (4CNI) shows two. Even though the spectrum of the model compound is perturbed by a Fermi resonance, we find that 4CNTrp itself is a useful IR label. Moreover, if the nitrile group is substituted at the 5 position, the Trp analog predominantly reports on its HB status. Because the current literature on similar compounds is too limited for a detailed solvatochromic analysis, we extend the available data significantly. Only now are microscopic details such as the mentioned sensitivity to electrostatics coming to light. The vibrational lifetime of the CN moiety (acting on a picosecond time scale in contrast to the nanosecond time scale for fluorescent emission) allows for its application in 2D-IR spectroscopy in the low picosecond range. Taken together, the benefits of CNTrps are that they absorb and emit separately from the naturally occurring Trp and that in these dual fluorescence/vibrational labels, observables of IR and fluorescence spectroscopy are modulated differently by their surroundings. Because IR absorption and fluorescence operate on different time and length scales, they thus provide complementary structural information.</p
N-Aryl mercaptoacetamides as potential multi-target inhibitors of metallo-β-lactamases (MBLs) and the virulence factor LasB from Pseudomonas aeruginosa
Increasing antimicrobial resistance is evolving to be one of the major threats to public health. To reduce the selection pressure and thus to avoid a fast development of resistance, novel approaches aim to target bacterial virulence instead of growth. Another strategy is to restore the activity of antibiotics already in clinical use. This can be achieved by the inhibition of resistance factors such as metallo-β-lactamases (MBLs). Since MBLs can cleave almost all β-lactam antibiotics, including the “last resort” carbapenems, their inhibition is of utmost importance. Here, we report on the synthesis and in vitro evaluation of N-aryl mercaptoacetamides as inhibitors of both clinically relevant MBLs and the virulence factor LasB from Pseudomonas aeruginosa. All tested N-aryl mercaptoacetamides showed low micromolar to submicromolar activities on the tested enzymes IMP-7, NDM-1 and VIM-1. The two most promising compounds were further examined in NDM-1 expressing Klebsiella pneumoniae isolates, where they restored the full activity of imipenem. Together with their LasB-inhibitory activity in the micromolar range, this class of compounds can now serve as a starting point for a multi-target inhibitor approach against both bacterial resistance and virulence, which is unprecedented in antibacterial drug discovery
Recommended from our members
Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN.
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9}) eV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation
Neutron Decay Correlations in the Nab Experiment
The Nab experiment will measure the correlation a between the momenta of the beta particle and antineutrino in neutron decay as well as the Fierz term b which distorts the beta spectrum
Effect of personal exposure to black carbon on changes in allergic asthma gene methylation measured 5 days later in urban children: importance of allergic sensitization
Background
Asthma gene DNA methylation may underlie the effects of air pollution on airway inflammation. However, the temporality and individual susceptibility to environmental epigenetic regulation of asthma has not been fully elucidated. Our objective was to determine the timeline of black carbon (BC) exposure, measured by personal sampling, on DNA methylation of allergic asthma genes 5 days later to capture usual weather variations and differences related to changes in behavior and activities. We also sought to determine how methylation may vary by seroatopy and cockroach sensitization and by elevated fractional exhaled nitric oxide (FeNO).
Methods
Personal BC levels were measured during two 24-h periods over a 6-day sampling period in 163 New York City children (age 9–14 years), repeated 6 months later. During home visits, buccal cells were collected as noninvasive surrogates for lower airway epithelial cells and FeNO measured as an indicator of airway inflammation. CpG promoter loci of allergic asthma genes (e.g., interleukin 4 (IL4), interferon gamma (IFNγ), inducible nitric oxide synthase (NOS2A)), arginase 2 (ARG2)) were pyrosequenced at the start and end of each sampling period.
Results
Higher levels of BC were associated with lower methylation of IL4 promoter CpG−48 5 days later. The magnitude of association between BC exposure and demethylation of IL4 CpG−48 and NOS2A CpG+5099 measured 5 days later appeared to be greater among seroatopic children, especially those sensitized to cockroach allergens (RR [95% CI] 0.55 [0.37–0.82] and 0.67 [0.45–0.98] for IL4 CpG−48 and NOS2A CpG+5099, respectively), compared to non-sensitized children (RR [95% CI] 0.87 [0.65–1.17] and 0.95 [0.69–1.33] for IL4 CpG−48 and NOS2A CpG+5099, respectively); however, the difference was not statistically different. In multivariable linear regression models, lower DNA methylation of IL4 CpG−48 and NOS2A CpG+5099 were associated with increased FeNO.
Conclusions
Our results suggest that exposure to BC may exert asthma proinflammatory gene demethylation 5 days later that in turn may link to airway inflammation. Our results further suggest that seroatopic children, especially those sensitized to cockroach allergens, may be more susceptible to the effect of acute BC exposure on epigenetic changes
Suppression of Penning discharges between the KATRIN spectrometers
The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)-neutrino mass with a sensitivity of 0.2eV/c by precisely measuring the endpoint region of the tritium β-decay spectrum. It uses a tandem of electrostatic spectrometers working as magnetic adiabatic collimation combined with an electrostatic (MAC-E) filters. In the space between the pre-spectrometer and the main spectrometer, creating a Penning trap is unavoidable when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create additional background electrons and endanger the spectrometer and detector section downstream. To counteract this problem, “electron catchers” were installed in the beamline inside the magnet bore between the two spectrometers. These catchers can be moved across the magnetic-flux tube and intercept on a sub-ms time scale the stored electrons along their magnetron motion paths. In this paper, we report on the design and the successful commissioning of the electron catchers and present results on their efficiency in reducing the experimental background
- …