5 research outputs found

    N‑Acyl Chain in Ceramide and Sphingomyelin Determines Their Mixing Behavior, Phase State, and Surface Topography in Langmuir Films

    Full text link
    Sphingolipids are membrane lipids composed by a long chain aminediol base, usually sphingosine, with a N-linked fatty acyl chain whose quality depends on the membrane type. The effect of length and unsaturation of the N-acyl chain on the mixing behavior of different sphingolipids has scarcely been studied, and in this work this issue is addressed employing Langmuir monolayers at the air–water interface, in order to assess the surface mixing in binary mixtures of different species of sphingomyelins and ceramides. The dependence on the monolayer composition of the mean molecular area, perpendicular dipole moment, domain segregation, and surface topography, as well as the film elasticity and optical thickness were studied. The results indicate that composition-dependent favorable interactions among sphingomyelin and ceramide occur as a consequence of complementary lateral packing and increased acyl chain ordering; the phase state of the components appears as a major factor determining miscibility among sphingomyelins and ceramides even in cases where the lipids have a considerable hydrocarbon chain length mismatch

    Surface Behavior of Sphingomyelins with Very Long Chain Polyunsaturated Fatty Acids and Effects of Their Conversion to Ceramides

    Full text link
    Molecular species of sphingomyelin (SM) with nonhydroxy (n) and 2-hydroxy (h) very long chain polyunsaturated fatty acids (n- and h-28:4, 30:5, and 32:5) abound in rat spermatogenic cells and spermatozoa. These SMs are located on the sperm head, where they are converted to the corresponding ceramides (Cer) after the completion of the acrosomal reaction, as induced in vitro. The aim of this study was to look into the surface properties of these unique SM species and how these properties change by the SM → Cer conversion. After isolation by HPLC, these SMs were organized in Langmuir films and studied alone, in combination with different proportions of Cer, and during their conversion to Cer by sphingomyelinase. Compression isotherms for all six SMs under study were compatible with a liquid-expanded (LE) state and showed large molecular areas. Only the longest SMs (n-32:5 and h-32:5 SM) underwent a phase transition upon cooling. Interestingly, the abundant h-28:4 Cer exhibited a highly compressible liquid-condensed (LC) phase compatible with a high conformational freedom of Cer molecules but with the characteristic low diffusional properties of the LC phase. In mixed films of h-28:4 SM/h-28:4 Cer, the components showed favorable mixing in the LE phase. The monolayer exhibited h-28:4 Cer-rich domains both in premixed films and when formed by the action of sphingomyelinase on pure h-28:4 SM films. Whereas the SMs from sperm behaved in a way similar to that of shorter acylated SMs, the corresponding Cers showed atypical rheological properties that may be relevant to the membrane structural rearrangements that take place on the sperm head after the completion of the acrosomal reaction

    Development of a Nonionic Azobenzene Amphiphile for Remote Photocontrol of a Model Biomembrane

    Full text link
    We report the synthesis and characterization of a simple nonionic azoamphiphile, C<sub>12</sub>OazoE<sub>3</sub>OH, which behaves as an optically controlled molecule alone and in a biomembrane environment. First, Langmuir monolayer and Brewster angle microscopy (BAM) experiments showed that pure C<sub>12</sub>OazoE<sub>3</sub>OH enriched in the (<i>E</i>) isomer was able to form solidlike mesophase even at low surface pressure associated with supramolecular organization of the azobenzene derivative at the interface. On the other hand, pure C<sub>12</sub>OazoE<sub>3</sub>OH enriched in the (<i>Z</i>) isomer formed a less solidlike monolayer due to the bent geometry around the azobenzene moiety. Second, C<sub>12</sub>OazoE<sub>3</sub>OH is well-mixed in a biological membrane model, Lipoid s75 (up to 20%mol), and photoisomerization among the lipids proceeded smoothly depending on light conditions. It is proposed that the cross-sectional area of the hydroxyl triethylenglycol head of C<sub>12</sub>OazoE<sub>3</sub>OH inhibits azobenzenes H-aggregation in the model membrane; thus, the tails conformation change due to photoisomerization is transferred efficiently to the lipid membrane. We showed that the lipid membrane effectively senses the azobenzene geometrical change photomodulating some properties, like compressibility modulus, transition temperature, and morphology. In addition, photomodulation proceeds with a color change from yellow to orange, providing the possibility to externally monitor the system. Finally, Gibbs monolayers showed that C<sub>12</sub>OazoE<sub>3</sub>OH is able to penetrate the highly packing biomembrane model; thus, C<sub>12</sub>OazoE<sub>3</sub>OH might be used as photoswitchable molecular probe in real systems

    Distinctive Interactions of Oleic Acid Covered Magnetic Nanoparticles with Saturated and Unsaturated Phospholipids in Langmuir Monolayers

    Full text link
    The growing number of innovations in nanomedicine and nanobiotechnology are posing new challenges in understanding the full spectrum of interactions between nanomateriales and biomolecules at nano-biointerfaces. Although considerable achievements have been accomplished by in vivo applications, many issues regarding the molecular nature of these interactions are far from being well-understood. In this work, we evaluate the interaction of hydrophobic magnetic nanoparticles (MNP) covered with a single layer of oleic acid with saturated and unsaturated phospholipids found in biomembranes through the use of Langmuir monolayers. We find distinctive interactions among the MNP with saturated and unsaturated phospholipids that are reflected by both, the compression isotherms and the surface topography of the films. The interaction between MNP and saturated lipids causes a noticeable reduction of the mean molecular area in the interfacial plane, while the interaction with unsaturated lipids promotes area expansion compared to the ideally mixed films. Moreover, when liquid expanded and liquid condensed phases of the phospholipid(s) coexist, the MNP preferably partition to the liquid-expanded phase, thus hindering the coalescence of the condensed domains with increasing surface pressure. In consequence organizational information on long-range order is attained. These results evidence the existence of a sensitive composition-dependent surface regulation given by phospholipid–nanoparticle interactions which enhance the biophysical relevance of understanding nanoparticle surface functionalization in relation to its interactions in biointerfaces constituted by defined types of biomolecules
    corecore