20 research outputs found
Unexpectedly allowed transition in two inductively coupled transmons
We present experimental results in which the unexpected zero-two transition
of a circuit composed of two inductively coupled transmons is observed. This
transition shows an unusual magnetic flux dependence with a clear disappearance
at zero magnetic flux. In a transmon qubit the symmetry of the wave functions
prevents this transition to occur due to selection rule. In our circuit the
Josephson effect introduces strong couplings between the two normal modes of
the artificial atom. This leads to a coherent superposition of states from the
two modes enabling such transitions to occur
Kerr coefficients of plasma resonances in Josephson junction chains
We present an experimental and theoretical analysis of the self- and
cross-Kerr effect of extended plasma resonances in Josephson junction chains.
We calculate the Kerr coefficients by deriving and diagonalizing the
Hamiltonian of a linear circuit model for the chain and then adding the
Josephson non-linearity as a perturbation. The calculated Kerr-coefficients are
compared with the measurement data of a chain of 200 junctions. The Kerr effect
manifests itself as a frequency shift that depends linearly on the number of
photons in a resonant mode. By changing the input power on a low signal level,
we are able to measure this shift. The photon number is calibrated using the
self-Kerr shift calculated from the sample parameters. We then compare the
measured cross-Kerr shift with the theoretical prediction, using the calibrated
photon number.Comment: 10 pages, 9 figure
Measurement Back-Action in Quantum Point-Contact Charge Sensing
Charge sensing with quantum point-contacts (QPCs) is a technique widely used in semiconductor quantum-dot research. Understanding the physics of this measurement process, as well as finding ways of suppressing unwanted measurement back-action, are therefore both desirable. In this article, we present experimental studies targeting these two goals. Firstly, we measure the effect of a QPC on electron tunneling between two InAs quantum dots, and show that a model based on the QPC’s shot-noise can account for it. Secondly, we discuss the possibility of lowering the measurement current (and thus the back-action) used for charge sensing by correlating the signals of two independent measurement channels. The performance of this method is tested in a typical experimental setup.Swiss National Science Foundatio
Experimental evidence for a delayed response of the above-ground vegetation and the seed bank to the invasion of an annual exotic plant in deciduous forests
Invasions by alien plants significantly affect native biodiversity and ecosystem functioning. We conducted a 5-year field experiment to investigate potential effects of the annual invasive plant Impatiens glandulifera on both the native above-ground vegetation and the soil seed bank in a deciduous forest in Switzerland. Eight years after the establishment of I. glandulifera, we set up plots in patches invaded by the alien plant, in plots from which the invasive plant had been manually removed and in plots which were not yet colonized by the invasive plant. We examined plant species richness, diversity and plant species composition in the above-ground vegetation and soil seed bank in all plots one year and five years after the initiation of the experiment. The 36 plots (3 plot types × 6 replicates × 2 sites) were equally distributed over two forest sites. Neither the native above-ground vegetation nor the soil seed bank was influenced by the presence of I. glandulifera one year after the start of the field experiment. After five years, however, plant species richness of both the above-ground vegetation and the soil seed bank was reduced by 25% and 30%, respectively, in plots invaded by the alien plant compared to plots from which I. glandulifera had been removed or uninvaded plots. Furthermore, plots invaded by the alien plant had a lower total seedling density (reduction by 60%) and an altered plant species composition in the soil seed bank compared to control plots. Our field experiment indicates that negative effects of the annual invasive plant on the native above-ground vegetation and soil seed bank of deciduous forests become visible with a delay of several years