2 research outputs found

    Conductance of the Single Electron Transistor for Arbitrary Tunneling Strength

    Full text link
    We study the temperature and gate voltage dependence of the conductance of the single electron transistor focusing on highly conducting devices. Electron tunneling is treated nonperturbatively by means of path integral Monte Carlo techniques and the conductance is determined from the Kubo formula. A regularized singular value decomposition scheme is employed to calculate the conductance from imaginary time simulation data. Our findings are shown to bridge between available analytical results in the semiclassical and perturbative limits and are found to explain recent experimental results in a regime not accessible by earlier methods.Comment: 4 pages, 2 figure

    Semiclassical cross section correlations

    Full text link
    We calculate within a semiclassical approximation the autocorrelation function of cross sections. The starting point is the semiclassical expression for the diagonal matrix elements of an operator. For general operators with a smooth classical limit the autocorrelation function of such matrix elements has two contributions with relative weights determined by classical dynamics. We show how the random matrix result can be obtained if the operator approaches a projector onto a single initial state. The expressions are verified in calculations for the kicked rotor.Comment: 6 pages, 2 figure
    corecore