10 research outputs found

    Methodology to estimate ionospheric scintillation risk maps and their contribution to position dilution of precision on the ground

    Get PDF
    Satellite-based communications, navigation systems and many scientific instruments rely on observations of trans-ionospheric signals. The quality of these signals can be deteriorated by ionospheric scintillation which can have detrimental effects on the mentioned applications. Therefore, monitoring of ionospheric scintillation and quantifying its effect on the ground are of significant interest. In this work, we develop a methodology which estimates the scintillation induced ionospheric uncertainties in the sky and translates their impact to the end-users on the ground. First, by using the risk concept from decision theory and by exploiting the intensity and duration of scintillation events (as measured by the S4 index), we estimate ionospheric risk maps that could readily give an initial impression on the effects of scintillation on the satellite-receiver communication. However, to better understand the influence of scintillation on the positioning accuracy on the ground, we formulate a new weighted dilution of precision (WPDOP) measure that incorporates the ionospheric scintillation risks as weighting factors for the given satellite-receiver constellations. These weights depend implicitly on scintillation intensity and duration thresholds which can be specified by the end-user based on the sensitivity of the application, for example. We demonstrate our methodology by using scintillation data from South America, and produce ionospheric risk maps which illustrate broad scintillation activity, especially at the equatorial anomaly. Moreover, we construct ground maps of WPDOP over a grid of hypothetical receivers which reveal that ionospheric scintillation can also affect such regions of the continent that are not exactly under the observed ionospheric scintillation structures. Particularly, this is evident in cases when only the Global Positioning System (GPS) is available.Comment: Keywords: Ionospheric scintillation risk, dilution of precision, statistics error covariances, weights, South America, S4 index, GNSS positioning uncertaint

    A novel approach to improve GNSS Precise Point Positioning during strong ionospheric scintillation: theory and demonstration

    Get PDF
    At equatorial latitudes, ionospheric scintillation is the major limitation in achieving high-accuracy GNSS positioning. This is because scintillation affects the tracking ability of GNSS receivers causing losses of lock and degradation on code pseudorange and carrier phase measurements, thus degrading accuracy. During strong ionospheric scintillation, such effects are more severe and GNSS users cannot rely on the integrity, reliability, and availability required for safety-critical applications. In this paper, we propose a novel approach able to greatly reduce these effects of scintillation on precise point positioning (PPP). Our new approach consists of three steps: 1) a new functional model that corrects the effects of range errors in the observables; 2) a new stochastic model that uses these corrections to generate more accurate positioning; and 3) a new strategy to attenuate the effects of losses of lock and consequent ambiguities re-initializations that are caused by the need to re-initialize the tracking. We demonstrate the effectiveness of our method in an experiment using a 30-day static dataset affected by different levels of scintillation in the Brazilian southeastern region. Even with limitations imposed by data gaps, our results demonstrate improvements of up to 80% in the positioning accuracy. We show that, in the best cases, our method can completely negate the effects of ionospheric scintillation and can recover the original PPP accuracy that would have existed without any scintillation. The significance of this paper lies in the improvement it offers in the integrity, reliability, and availability of GNSS services and applications.</p

    GPS Availability and Positioning Issues When the Signal Paths are Aligned with Ionospheric Plasma Bubbles

    Get PDF
    Made available in DSpace on 2018-12-11T17:24:17Z (GMT). No. of bitstreams: 0 Previous issue date: 2018-10-01Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)The propagation paths of signals through equatorial ionospheric irregularities are analyzed by evaluating their effects on Global Navigation Satellite System (GNSS) positioning and availability. Based on observations during 32 days by a scintillation monitor at São José dos Campos, Brazil, it was noted that there is a dominance of enhanced scintillation events for Global Positioning System (GPS) ray paths aligned with the azimuth angle of 345° (geographic northwest). This azimuth corresponds to the magnetic meridian that has a large westward declination angle in the region (21.4ºW). Such results suggest that the enhanced scintillation events were associated with GPS signals that propagated through plasma bubbles aligned along the direction of the magnetic field. It will be shown that, under this alignment condition, the longer propagation path length through plasma bubbles can result in more severe scintillation cases and more losses of signal lock, as supported by proposed statistics of bit error probability and mean time between cycle slips. Additionally, large precise positioning errors are also related to these events, as demonstrated by precise point positioning experiments.Instituto de Aeronáutica e Espaço IAE/Instituto Tecnológico de Aeronáutica ITAInstituto Federal de Educação Ciência e Tecnologia de São Paulo Campus Presidente Epitácio (IFSP-PEP)Centro de Estudos em Telecomunicações Pontifícia Universidade Católica do Rio de Janeiro (CETUC/PUC-Rio), Rua Marquês de São Vicente 225Instituto Tecnológico de Aeronáutica ITA/Instituto Nacional de Pesquisas Espaciais INPEInstituto Nacional de Pesquisas Espaciais INPEInstituto Tecnológico de Aeronáutica ITAUniversidade Estadual Paulista Júlio de Mesquita Filho UNESPUniversity of BathUniversidade Estadual Paulista Júlio de Mesquita Filho UNESPCNPq: 309013/2016-0CNPq: 310802/2015-6CNPq: 465648/2014-2CAPES: 88881.134266/2016-0

    Performance of GPS positioning in the presence of irregularities in the auroral and polar ionospheres during EISCAT UHF/ESR measurements

    Get PDF
    Irregularities in the spatial distribution of ionospheric electron density introduce temporal fluctuations in the intensity and phase of radio signals received from Global Navigation Satellite Systems (GNSS). The impact of phase fluctuations originating from irregularities in the auroral and polar ionospheres on GPS positioning was investigated on three days in March 2018 in the presence of quiet-to-moderately disturbed magnetic conditions by combining measurements from GPS and EISCAT UHF/ESR incoherent scatter radars. Two different positioning solutions were analysed: broadcast kinematic (BK) and precise static (PS). The results show that the propagation through irregularities induced residual errors on the observables leading to an increase in the positioning error, in its variability, and in the occurrence of gaps. An important aspect emerging from this study is that the variability of the 3-D positioning error was reduced, and the presence of gaps disappeared when the positioning solutions were evaluated at a 1 s rate rather than at a 30 s rate. This is due to the transient nature of residual errors that are more significant over 30 s time intervals in the presence of irregularities with scale size between few kilometres in the E region to few tens of kilometres in the F region

    GPS Availability and Positioning Issues When the Signal Paths are Aligned with Ionospheric Plasma Bubbles

    Get PDF
    The propagation paths of signals through equatorial ionospheric irregularities are analyzed by evaluating their effects on Global Navigation Satellite System (GNSS) positioning and availability. Based on observations during 32 days by a scintillation monitor at São José dos Campos, Brazil, it was noted that there is a dominance of enhanced scintillation events for Global Positioning System (GPS) ray paths aligned with the azimuth angle of 345° (geographic northwest). This azimuth corresponds to the magnetic meridian that has a large westward declination angle in the region (21.4ºW). Such results suggest that the enhanced scintillation events were associated with GPS signals that propagated through plasma bubbles aligned along the direction of the magnetic field. It will be shown that, under this alignment condition, the longer propagation path length through plasma bubbles can result in more severe scintillation cases and more losses of signal lock, as supported by proposed statistics of bit error probability and mean time between cycle slips. Additionally, large precise positioning errors are also related to these events, as demonstrated by precise point positioning experiments
    corecore