2,088 research outputs found
Evolution in the Clustering of Galaxies for Z < 1
Measuring the evolution in the clustering of galaxies over a large redshift
range is a challenging problem. For a two-dimensional galaxy catalog, however,
we can measure the galaxy-galaxy angular correlation function which provides
information on the density distribution of galaxies. By utilizing photometric
redshifts, we can measure the angular correlation function in redshift shells
(Brunner 1997, Connolly et al. 1998) which minimizes the galaxy projection
effect, and allows for a measurement of the evolution in the correlation
strength with redshift. In this proceedings, we present some preliminary
results which extend our previous work using more accurate photometric
redshifts, and also incorporate absolute magnitudes, so that we can measure the
evolution of clustering with either redshift or intrinsic luminosity.Comment: 6 pages, 6 figures requires paspconf.sty. To be published in
"Photometric Redshifts and High Redshift Galaxies", eds. R. Weymann, L.
Storrie-Lombardi, M. Sawicki & R. Brunner, (San Francisco: ASP Conference
Series
Galaxy Number Counts from the Sloan Digital Sky Survey Commissioning Data
We present bright galaxy number counts in five broad bands (u', g', r', i', z') from imaging data taken during the commissioning phase of the Sloan Digital Sky Survey (SDSS). The counts are derived from two independent stripes of imaging scans along the celestial equator, one each toward the northern and the southern Galactic cap, covering about 230 and 210 deg^2, respectively. A careful study is made to verify the reliability of the photometric catalog. For galaxies brighter than r* = 16, the catalog produced by automated software is examined against eye inspection of all objects. Statistically meaningful results on the galaxy counts are obtained in the magnitude range 12 ≤ r* ≤ 21, using a sample of 900,000 galaxies. The counts from the two stripes differ by about 30% at magnitudes brighter than r* = 15.5, consistent with a local 2 σ fluctuation due to large-scale structure in the galaxy distribution. The shape of the number counts–magnitude relation brighter than r* = 16 is well characterized by N ∝ 10^(0.6m), the relation expected for a homogeneous galaxy distribution in a "Euclidean" universe. In the magnitude range 16 < r* < 21, the galaxy counts from both stripes agree very well and follow the prediction of the no-evolution model, although the data do not exclude a small amount of evolution. We use empirically determined color transformations to derive the galaxy number counts in the B and I_(814) bands. We compute the luminosity density of the universe at zero redshift in the five SDSS bands and in the B band. We find L_B = 2.4 ± 0.4 × 10^8 L_⊙ h Mpc^(-3), for a reasonably wide range of parameters of the Schechter luminosity function in the B band
- …
