1,104 research outputs found
Markovian master equations for quantum thermal machines: local vs global approach
The study of quantum thermal machines, and more generally of open quantum
systems, often relies on master equations. Two approaches are mainly followed.
On the one hand, there is the widely used, but often criticized, local
approach, where machine sub-systems locally couple to thermal baths. On the
other hand, in the more established global approach, thermal baths couple to
global degrees of freedom of the machine. There has been debate as to which of
these two conceptually different approaches should be used in situations out of
thermal equilibrium. Here we compare the local and global approaches against an
exact solution for a particular class of thermal machines. We consider
thermodynamically relevant observables, such as heat currents, as well as the
quantum state of the machine. Our results show that the use of a local master
equation is generally well justified. In particular, for weak inter-system
coupling, the local approach agrees with the exact solution, whereas the global
approach fails for non-equilibrium situations. For intermediate coupling, the
local and the global approach both agree with the exact solution and for strong
coupling, the global approach is preferable. These results are backed by
detailed derivations of the regimes of validity for the respective approaches.Comment: Published version. See also the related work by J. Onam Gonzalez et
al. arXiv:1707.0922
Markovian master equations for quantum thermal machines: local versus global approach
The study of quantum thermal machines, and more generally of open quantum systems, often relies on master equations. Two approaches are mainly followed. On the one hand, there is the widely used, but often criticized, local approach, where machine sub-systems locally couple to thermal baths. On the other hand, in the more established global approach, thermal baths couple to global degrees of freedom of the machine. There has been debate as to which of these two conceptually different approaches should be used in situations out of thermal equilibrium. Here we compare the local and global approaches against an exact solution for a particular class of thermal machines. We consider thermodynamically relevant observables, such as heat currents, as well as the quantum state of the machine. Our results show that the use of a local master equation is generally well justified. In particular, for weak inter-system coupling, the local approach agrees with the exact solution, whereas the global approach fails for non-equilibrium situations. For intermediate coupling, the local and the global approach both agree with the exact solution and for strong coupling, the global approach is preferable. These results are backed by detailed derivations of the regimes of validity for the respective approaches
Efficacy and safety of abrocitinib in patients with moderateâtoâsevere atopic dermatitis and comorbid allergies
Background: Abrocitinib efficacy by comorbidity status in patients with moderateâtoâsevere atopic dermatitis (AD) has not been previously assessed. This post hoc analysis evaluated the efficacy and safety of abrocitinib in patients with AD and allergic comorbidities.
Methods: Data were pooled from patients who received abrocitinib 200âmg, 100âmg, or placebo in phase 2b (NCT02780167) and phase 3 (NCT03349060, NCT03575871) monotherapy trials. Patients with and without allergic comorbidities (allergic asthma, rhinitis, conjunctivitis, or food allergy) were evaluated for Investigator's Global Assessment (IGA) response (clear [0] or almost clear [1]), â„75% improvement in the Eczema Area and Severity Index (EASIâ75), â„4âpoint improvement in Peak Pruritus Numerical Rating Scale (PPâNRS4), and Dermatology Life Quality Index (DLQI) response (<2 with baseline score â„2). Other outcomes were PatientâOriented Eczema Measure (POEM), SCORing Atopic Dermatitis (SCORAD), Pruritus and Symptoms Assessment for Atopic Dermatitis (PSAAD), and treatmentâemergent adverse events (TEAEs).
Results: Of 942 patients, 498 (53%) reported at least one allergic comorbidity (asthma only, 33%; conjunctivitis only or rhinitis only or both, 17%; food allergies only, 15%; >1 allergic comorbidity, 34%). Regardless of comorbidity status, from Week 2 to Week 12, higher percentages of patients treated with either abrocitinib dose achieved IGA 0/1, EASIâ75, PPâNRS4, or DLQI 0/1 versus placeboâtreated patients. Changes from baseline in POEM, SCORAD, and PSAAD were greater with abrocitinib than with placebo in patients with and without allergic comorbidities. Most TEAEs were mild or moderate.
Conclusions: Efficacy and safety data support abrocitinib use to manage AD in patients with or without allergic comorbidities
Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride
Gα subunits act to regulate vegetative growth, conidiation, and the mycoparasitic response in Trichoderma atroviride. To extend our knowledge on G protein signalling, we analysed G protein-coupled receptors (GPCRs). As the genome sequence of T. atroviride is not publicly available yet, we carried out an in silico exploration of the genome database of the close relative T. reesei. Twenty genes encoding putative GPCRs distributed over eight classes and additional 35 proteins similar to the Magnaporthe grisea PTH11 receptor were identified. Subsequently, four T. atroviride GPCR-encoding genes were isolated and affliated to the cAMP receptor-like family by phylogenetic and topological analyses. All four genes showed lowest expression on glycerol and highest mRNA levels upon carbon starvation. Transcription of gpr3 and gpr4 responded to exogenously added cAMP and the shift from liquid to solid media. gpr3 mRNA levels also responded to the presence of fungal hyphae or cellulose membranes. Further characterisation of mutants bearing a gpr1-silencing construct revealed that Gpr1 is essential for vegetative growth, conidiation and conidial germination. Four genes encoding the first GPCRs described in Trichoderma were isolated and their expression characterized. At least one of these GPCRs is important for several cellular processes, supporting the fundamental role of G protein signalling in this fungus
Discovery of Two Gravitationally Lensed Quasars with Image Separations of 3 Arcseconds from the Sloan Digital Sky Survey
We report the discovery of two doubly-imaged quasars, SDSS
J100128.61+502756.9 and SDSS J120629.65+433217.6, at redshifts of 1.838 and
1.789 and with image separations of 2.86'' and 2.90'', respectively. The
objects were selected as lens candidates from the Sloan Digital Sky Survey
(SDSS). Based on the identical nature of the spectra of the two quasars in each
pair and the identification of the lens galaxies, we conclude that the objects
are gravitational lenses. The lenses are complicated; in both systems there are
several galaxies in the fields very close to the quasars, in addition to the
lens galaxies themselves. The lens modeling implies that these nearby galaxies
contribute significantly to the lens potentials. On larger scales, we have
detected an enhancement in the galaxy density near SDSS J100128.61+502756.9.
The number of lenses with image separation of ~3'' in the SDSS already exceeds
the prediction of simple theoretical models based on the standard
Lambda-dominated cosmology and observed velocity function of galaxies.Comment: 24 pages, 9 figures, accepted for publication in Ap
Tests of the Accelerating Universe with Near-Infrared Observations of a High-Redshift Type Ia Supernova
We have measured the rest-frame B,V, and I-band light curves of a
high-redshift type Ia supernova (SN Ia), SN 1999Q (z=0.46), using HST and
ground-based near-infrared detectors.
A goal of this study is the measurement of the color excess, E_{B-I}, which
is a sensitive indicator of interstellar or intergalactic dust which could
affect recent cosmological measurements from high-redshift SNe Ia. Our
observations disfavor a 30% opacity of SN Ia visual light by dust as an
alternative to an accelerating Universe. This statement applies to both
Galactic-type dust
(rejected at the 3.4 sigma confidence level) and greyer dust (grain size >
0.1 microns; rejected at the 2.3 to 2.6 sigma confidence level) as proposed by
Aguirre (1999). The rest-frame -band light cur ve shows the secondary
maximum a month after B maximum typical of nearby SNe Ia of normal luminosi ty,
providing no indication of evolution as a function of redshift out to z~0.5. A
n expanded set of similar observations could improve the constraints on any
contribution of extragalactic dust to the dimming of high-redshift SNe Ia.Comment: Accepted to the Astrophysical Journal, 12 pages, 2 figure
Evolutionary relationships between Rhynchosporium lolii sp. nov. and other Rhynchosporium species on grass.
Copyright: 2013 King et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThe fungal genus Rhynchosporium (causative agent of leaf blotch) contains several host-specialised species, including R. commune (colonising barley and brome-grass), R. agropyri (couch-grass), R. secalis (rye and triticale) and the more distantly related R. orthosporum (cocksfoot). This study used molecular fingerprinting, multilocus DNA sequence data, conidial morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas, and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum, but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from R. orthosporum ca. 5735 years before the present. The colonisation strategy of all of the different Rhynchosporium species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species.Peer reviewedFinal Published versio
Binary Quasars in the Sloan Digital Sky Survey: Evidence for Excess Clustering on Small Scales
We present a sample of 218 new quasar pairs with proper transverse
separations R_prop < 1 Mpc/h over the redshift range 0.5 < z < 3.0, discovered
from an extensive follow up campaign to find companions around the Sloan
Digital Sky Survey and 2dF Quasar Redshift Survey quasars. This sample includes
26 new binary quasars with separations R_prop < 50 kpc/h (theta < 10
arcseconds), more than doubling the number of such systems known. We define a
statistical sample of binaries selected with homogeneous criteria and compute
its selection function, taking into account sources of incompleteness. The
first measurement of the quasar correlation function on scales 10 kpc/h <
R_prop < 400 kpc/h is presented. For R_prop < 40 kpc/h, we detect an order of
magnitude excess clustering over the expectation from the large scale R_prop >
3 Mpc/h quasar correlation function, extrapolated down as a power law to the
separations probed by our binaries. The excess grows to ~ 30 at R_prop ~ 10
kpc/h, and provides compelling evidence that the quasar autocorrelation
function gets progressively steeper on sub-Mpc scales. This small scale excess
can likely be attributed to dissipative interaction events which trigger quasar
activity in rich environments. Recent small scale measurements of galaxy
clustering and quasar-galaxy clustering are reviewed and discussed in relation
to our measurement of small scale quasar clustering.Comment: 25 pages, 12 figures, 9 tables. Submitted to the Astronomical Journa
Photometric Redshifts of Quasars
We demonstrate that the design of the Sloan Digital Sky Survey (SDSS) filter
system and the quality of the SDSS imaging data are sufficient for determining
accurate and precise photometric redshifts (``photo-z''s) of quasars. Using a
sample of 2625 quasars, we show that photo-z determination is even possible for
z<=2.2 despite the lack of a strong continuum break that robust photo-z
techniques normally require. We find that, using our empirical method on our
sample of objects known to be quasars, approximately 70% of the photometric
redshifts are correct to within delta z = 0.2; the fraction of correct
photometric redshifts is even better for z>3. The accuracy of quasar
photometric redshifts does not appear to be dependent upon magnitude to nearly
21st magnitude in i'. Careful calibration of the color-redshift relation to
21st magnitude may allow for the discovery of on the order of 10^6 quasars
candidates in addition to the 10^5 quasars that the SDSS will confirm
spectroscopically. We discuss the efficient selection of quasar candidates from
imaging data for use with the photometric redshift technique and the potential
scientific uses of a large sample of quasar candidates with photometric
redshifts.Comment: 29 pages, 8 figures, submitted to A
The Ensemble Photometric Variability of ~25000 Quasars in the Sloan Digital Sky Survey
Using a sample of over 25000 spectroscopically confirmed quasars from the
Sloan Digital Sky Survey, we show how quasar variability in the rest frame
optical/UV regime depends upon rest frame time lag, luminosity, rest
wavelength, redshift, the presence of radio and X-ray emission, and the
presence of broad absorption line systems. The time dependence of variability
(the structure function) is well-fit by a single power law on timescales from
days to years. There is an anti-correlation of variability amplitude with rest
wavelength, and quasars are systematically bluer when brighter at all
redshifts. There is a strong anti-correlation of variability with quasar
luminosity. There is also a significant positive correlation of variability
amplitude with redshift, indicating evolution of the quasar population or the
variability mechanism. We parameterize all of these relationships. Quasars with
RASS X-ray detections are significantly more variable (at optical/UV
wavelengths) than those without, and radio loud quasars are marginally more
variable than their radio weak counterparts. We find no significant difference
in the variability of quasars with and without broad absorption line troughs.
Models involving multiple discrete events or gravitational microlensing are
unlikely by themselves to account for the data. So-called accretion disk
instability models are promising, but more quantitative predictions are needed.Comment: 41 pages, 21 figures, AASTeX, Accepted for publication in Ap
- âŠ