5 research outputs found
Anderson transition on the Cayley tree as a traveling wave critical point for various probability distributions
For Anderson localization on the Cayley tree, we study the statistics of
various observables as a function of the disorder strength and the number
of generations. We first consider the Landauer transmission . In the
localized phase, its logarithm follows the traveling wave form where (i) the disorder-averaged value moves linearly
and the localization length
diverges as with (ii) the
variable is a fixed random variable with a power-law tail for large with , so that all
integer moments of are governed by rare events. In the delocalized phase,
the transmission remains a finite random variable as , and
we measure near criticality the essential singularity with . We then consider the
statistical properties of normalized eigenstates, in particular the entropy and
the Inverse Participation Ratios (I.P.R.). In the localized phase, the typical
entropy diverges as with , whereas it grows
linearly in in the delocalized phase. Finally for the I.P.R., we explain
how closely related variables propagate as traveling waves in the delocalized
phase. In conclusion, both the localized phase and the delocalized phase are
characterized by the traveling wave propagation of some probability
distributions, and the Anderson localization/delocalization transition then
corresponds to a traveling/non-traveling critical point. Moreover, our results
point towards the existence of several exponents at criticality.Comment: 28 pages, 21 figures, comments welcom
Quasi-stationary regime of a branching random walk in presence of an absorbing wall
A branching random walk in presence of an absorbing wall moving at a constant
velocity undergoes a phase transition as the velocity of the wall
varies. Below the critical velocity , the population has a non-zero
survival probability and when the population survives its size grows
exponentially. We investigate the histories of the population conditioned on
having a single survivor at some final time . We study the quasi-stationary
regime for when is large. To do so, one can construct a modified
stochastic process which is equivalent to the original process conditioned on
having a single survivor at final time . We then use this construction to
show that the properties of the quasi-stationary regime are universal when
. We also solve exactly a simple version of the problem, the
exponential model, for which the study of the quasi-stationary regime can be
reduced to the analysis of a single one-dimensional map.Comment: 2 figures, minor corrections, one reference adde
Random tree growth by vertex splitting
We study a model of growing planar tree graphs where in each time step we
separate the tree into two components by splitting a vertex and then connect
the two pieces by inserting a new link between the daughter vertices. This
model generalises the preferential attachment model and Ford's -model
for phylogenetic trees. We develop a mean field theory for the vertex degree
distribution, prove that the mean field theory is exact in some special cases
and check that it agrees with numerical simulations in general. We calculate
various correlation functions and show that the intrinsic Hausdorff dimension
can vary from one to infinity, depending on the parameters of the model.Comment: 47 page