278 research outputs found
Post-Newtonian Theory for Precision Doppler Measurements of Binary Star Orbits
The determination of velocities of stars from precise Doppler measurements is
described here using relativistic theory of astronomical reference frames so as
to determine the Keplerian and post-Keplerian parameters of binary systems. We
apply successive Lorentz transformations and the relativistic equation of light
propagation to establish the exact treatment of Doppler effect in binary
systems both in special and general relativity theories. As a result, the
Doppler shift is a sum of (1) linear in terms, which include the
ordinary Doppler effect and its variation due to the secular radial
acceleration of the binary with respect to observer; (2) terms proportional to
, which include the contributions from the quadratic Doppler effect
caused by the relative motion of binary star with respect to the Solar system,
motion of the particle emitting light and diurnal rotational motion of
observer, orbital motion of the star around the binary's barycenter, and
orbital motion of the Earth; and (3) terms proportional to , which
include the contributions from redshifts due to gravitational fields of the
star, star's companion, Galaxy, Solar system, and the Earth. After
parameterization of the binary's orbit we find that the presence of
periodically changing terms in the Doppler schift enables us disentangling
different terms and measuring, along with the well known Keplerian parameters
of the binary, four additional post-Keplerian parameters, including the
inclination angle of the binary's orbit, . We briefly discuss feasibility of
practical implementation of these theoretical results, which crucially depends
on further progress in the technique of precision Doppler measurements.Comment: Minor changes, 1 Figure included, submitted to Astrophys.
Gravitational bending of light by planetary multipoles and its measurement with microarcsecond astronomical interferometers
General relativistic deflection of light by mass, dipole, and quadrupole
moments of gravitational field of a moving massive planet in the Solar system
is derived. All terms of order 1 microarcsecond are taken into account,
parametrized, and classified in accordance with their physical origin. We
calculate the instantaneous patterns of the light-ray deflections caused by the
monopole, the dipole and the quadrupole moments, and derive equations
describing apparent motion of the deflected position of the star in the sky
plane as the impact parameter of the light ray with respect to the planet
changes due to its orbital motion. The present paper gives the physical
interpretation of the observed light-ray deflections and discusses the
observational capabilities of the near-future optical (SIM) and radio (SKA)
interferometers for detecting the Doppler modulation of the radial deflection,
and the dipolar and quadrupolar light-ray bendings by the Jupiter and the
Saturn.Comment: 33 pages, 10 figures, accepted to Phys. Rev.
Comment on 'Model-dependence of Shapiro time delay and the "speed of gravity/speed of light" controversy'
In a recent paper published in Classical and Quantum Gravity, 2004, vol. 21,
p. 3803 Carlip used a vector-tensor theory of gravity to calculate the Shapiro
time delay by a moving gravitational lens. He claimed that the relativistic
correction of the order of v/c beyond the static part of the Shapiro delay
depends on the speed of light c and, hence, the Fomalont-Kopeikin experiment is
not sensitive to the speed of gravity c_g. In this letter we analyze Carlip's
calculation and demonstrate that it implies a gravitodynamic (non-metric)
system of units based on the principle of the constancy of the speed of gravity
but it is disconnected from the practical method of measurement of astronomical
distances based on the principle of the constancy of the speed of light and the
SI metric (electrodynamic) system of units. Re-adjustment of
theoretically-admissible but practically unmeasurable Carlip's coordinates to
the SI metric system of units used in JPL ephemeris, reveals that the
velocity-dependent correction to the static part of the Shapiro time delay does
depend on the speed of gravity c_g as shown by Kopeikin in Classical and
Quantum Gravity, 2004, vol. 21, p. 1. This analysis elucidates the importance
of employing the metric system of units for physically meaningful
interpretation of gravitational experiments.Comment: 8 pages, no figures, accepted to Classical and Quantum Gravit
Numerical versus analytical accuracy of the formulas for light propagation
Numerical integration of the differential equations of light propagation in
the Schwarzschild metric shows that in some situations relevant for practical
observations the well-known post-Newtonian solution for light propagation has
an error up to 16 microarcsecond. The aim of this work is to demonstrate this
fact, identify the reason for this error and to derive an analytical formula
accurate at the level of 1 microarcsecond as needed for high-accuracy
astrometric projects (e.g., Gaia).
An analytical post-post-Newtonian solution for the light propagation for both
Cauchy and boundary problems is given for the Schwarzschild metric augmented by
the PPN and post-linear parameters , and . Using
analytical upper estimates of each term we investigate which
post-post-Newtonian terms may play a role for an observer in the solar system
at the level of 1 microarcsecond and conclude that only one post-post-Newtonian
term remains important for this numerical accuracy. In this way, an analytical
solution for the boundary problem for light propagation is derived. That
solution contains terms of both post-Newtonian and post-post-Newtonian order,
but is valid for the given numerical level of 1 microarcsecond. The derived
analytical solution has been verified using the results of a high-accuracy
numerical integration of differential equations of light propagation and found
to be correct at the level well below 1 microarcsecond for arbitrary observer
situated within the solar system. Furthermore, the origin of the
post-post-Newtonian terms relevant for the microarcsecond accuracy is
elucidated. We demonstrate that these terms result from an inadequate choice of
the impact parameter in the standard post-Newtonian formulas
Experimental Tests of General Relativity
Einstein's general theory of relativity is the standard theory of gravity,
especially where the needs of astronomy, astrophysics, cosmology and
fundamental physics are concerned. As such, this theory is used for many
practical purposes involving spacecraft navigation, geodesy, and time transfer.
Here I review the foundations of general relativity, discuss recent progress in
the tests of relativistic gravity in the solar system, and present motivations
for the new generation of high-accuracy gravitational experiments. I discuss
the advances in our understanding of fundamental physics that are anticipated
in the near future and evaluate the discovery potential of the recently
proposed gravitational experiments.Comment: revtex4, 30 pages, 10 figure
Parametrized Post-Newtonian Orbital Effects in Extrasolar Planets
Perturbative Post-Newtonian variations of the standard osculating orbital
elements are obtained by using the two-body equations of motion in the
Parameterized Post-Newtonian theoretical framework. The results obtained are
applied to the Einstein and. Brans - Dicke theories. As a results, the
semi-major axis and eccentricity exhibit periodic variation, but no secular
changes.. The longitude of periastron and mean longitude at epoch experience
both secular and periodic shifts. The Post-Newtonian effects are calculated and
discussed for six extrasolar planets.Comment: Accepted for publication in Astrophys. Space Sc
Shapiro Effect as a Possible Cause of the Low-Frequency Pulsar Timing Noise in Globular Clusters
A prolonged timing of millisecond pulsars has revealed low-frequency
uncorrelated noise, presumably of astrophysical origin, in the pulse arrival
time (PAT) residuals for some of them. In most cases, pulsars in globular
clusters show a low-frequency modulation of their rotational phase and spin
rate. The relativistic time delay of the pulsar signal in the curved space time
of randomly distributed and moving globular cluster stars (the Shapiro effect)
is suggested as a possible cause of this modulation.
Given the smallness of the aberration corrections that arise from the
nonstationarity of the gravitational field of the randomly distributed ensemble
of stars under consideration, a formula is derived for the Shapiro effect for a
pulsar in a globular cluster. The derived formula is used to calculate the
autocorrelation function of the low-frequency pulsar noise, the slope of its
power spectrum, and the behavior of the statistic that characterizes
the spectral properties of this noise in the form of a time function. The
Shapiro effect under discussion is shown to manifest itself for large impact
parameters as a low-frequency noise of the pulsar spin rate with a spectral
index of n=-1.8 that depends weakly on the specific model distribution of stars
in the globular cluster. For small impact parameters, the spectral index of the
noise is n=-1.5.Comment: 23 pages, 6 figure
A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro
Basic cellular and network mechanisms underlying gamma frequency oscillations (30–80 Hz) have been well characterized in the hippocampus and associated structures. In these regions, gamma rhythms are seen as an emergent property of networks of principal cells and fast-spiking interneurons. In contrast, in the neocortex a number of elegant studies have shown that specific types of principal neuron exist that are capable of generating powerful gamma frequency outputs on the basis of their intrinsic conductances alone. These fast rhythmic bursting (FRB) neurons (sometimes referred to as "chattering" cells) are activated by sensory stimuli and generate multiple action potentials per gamma period. Here, we demonstrate that FRB neurons may function by providing a large-scale input to an axon plexus consisting of gap-junctionally connected axons from both FRB neurons and their anatomically similar counterparts regular spiking neurons. The resulting network gamma oscillation shares all of the properties of gamma oscillations generated in the hippocampus but with the additional critical dependence on multiple spiking in FRB cells
Neither participation nor revolution: the strategy of the Moroccan Jamiat al-Adl wal-Ihsan
Scholars and students of Islamist movements are divided over the issue of Islamists' commitment to democracy and a number of studies have attempted to discover the true nature of Islamist parties. This paper rejects this approach and argues that the behaviour of Islamist parties can be better understood through an analysis of the constraints and opportunities that their surrounding environment provides. Specifically, the paper aims at explaining the choice of the Moroccan Jamiat al-Adl wal-Ihsan neither to participate in institutional politics nor to undertake violent actions to transform the regime. This is done through an examination of its relations with the other political actors. The paper argues that Jamiat al-Adl wal-Ihsan's behaviour is as much the product of rational thinking as it is of ideology and provides evidence to support this claim. Such findings are important not only in the Moroccan context, but contribute to a growing literature claiming that Islamist movements should be treated as rational political actors operating under 'environmental' constraints and opportunities
Signals for Lorentz Violation in Post-Newtonian Gravity
The pure-gravity sector of the minimal Standard-Model Extension is studied in
the limit of Riemann spacetime. A method is developed to extract the modified
Einstein field equations in the limit of small metric fluctuations about the
Minkowski vacuum, while allowing for the dynamics of the 20 independent
coefficients for Lorentz violation. The linearized effective equations are
solved to obtain the post-newtonian metric. The corresponding post-newtonian
behavior of a perfect fluid is studied and applied to the gravitating many-body
system. Illustrative examples of the methodology are provided using bumblebee
models. The implications of the general theoretical results are studied for a
variety of existing and proposed gravitational experiments, including lunar and
satellite laser ranging, laboratory experiments with gravimeters and torsion
pendula, measurements of the spin precession of orbiting gyroscopes, timing
studies of signals from binary pulsars, and the classic tests involving the
perihelion precession and the time delay of light. For each type of experiment
considered, estimates of the attainable sensitivities are provided. Numerous
effects of local Lorentz violation can be studied in existing or near-future
experiments at sensitivities ranging from parts in 10^4 down to parts in
10^{15}.Comment: 46 pages two-column REVTeX, accepted in Physical Review
- …