5 research outputs found

    A Boosting Approach to Reinforcement Learning

    Full text link
    Reducing reinforcement learning to supervised learning is a well-studied and effective approach that leverages the benefits of compact function approximation to deal with large-scale Markov decision processes. Independently, the boosting methodology (e.g. AdaBoost) has proven to be indispensable in designing efficient and accurate classification algorithms by combining inaccurate rules-of-thumb. In this paper, we take a further step: we reduce reinforcement learning to a sequence of weak learning problems. Since weak learners perform only marginally better than random guesses, such subroutines constitute a weaker assumption than the availability of an accurate supervised learning oracle. We prove that the sample complexity and running time bounds of the proposed method do not explicitly depend on the number of states. While existing results on boosting operate on convex losses, the value function over policies is non-convex. We show how to use a non-convex variant of the Frank-Wolfe method for boosting, that additionally improves upon the known sample complexity and running time even for reductions to supervised learning.Comment: Now in sync with camera ready for NeurIPS 202

    Boosting for Control of Dynamical Systems

    Full text link
    We study the question of how to aggregate controllers for dynamical systems in order to improve their performance. To this end, we propose a framework of boosting for online control. Our main result is an efficient boosting algorithm that combines weak controllers into a provably more accurate one. Empirical evaluation on a host of control settings supports our theoretical findings

    Online Agnostic Boosting via Regret Minimization

    Full text link
    Boosting is a widely used machine learning approach based on the idea of aggregating weak learning rules. While in statistical learning numerous boosting methods exist both in the realizable and agnostic settings, in online learning they exist only in the realizable case. In this work we provide the first agnostic online boosting algorithm; that is, given a weak learner with only marginally-better-than-trivial regret guarantees, our algorithm boosts it to a strong learner with sublinear regret. Our algorithm is based on an abstract (and simple) reduction to online convex optimization, which efficiently converts an arbitrary online convex optimizer to an online booster. Moreover, this reduction extends to the statistical as well as the online realizable settings, thus unifying the 4 cases of statistical/online and agnostic/realizable boosting
    corecore