4 research outputs found

    What Affects Learned Equivariance in Deep Image Recognition Models?

    Full text link
    Equivariance w.r.t. geometric transformations in neural networks improves data efficiency, parameter efficiency and robustness to out-of-domain perspective shifts. When equivariance is not designed into a neural network, the network can still learn equivariant functions from the data. We quantify this learned equivariance, by proposing an improved measure for equivariance. We find evidence for a correlation between learned translation equivariance and validation accuracy on ImageNet. We therefore investigate what can increase the learned equivariance in neural networks, and find that data augmentation, reduced model capacity and inductive bias in the form of convolutions induce higher learned equivariance in neural networks.Comment: Accepted at CVPR workshop L3D-IVU 202

    Color Equivariant Convolutional Networks

    Full text link
    Color is a crucial visual cue readily exploited by Convolutional Neural Networks (CNNs) for object recognition. However, CNNs struggle if there is data imbalance between color variations introduced by accidental recording conditions. Color invariance addresses this issue but does so at the cost of removing all color information, which sacrifices discriminative power. In this paper, we propose Color Equivariant Convolutions (CEConvs), a novel deep learning building block that enables shape feature sharing across the color spectrum while retaining important color information. We extend the notion of equivariance from geometric to photometric transformations by incorporating parameter sharing over hue-shifts in a neural network. We demonstrate the benefits of CEConvs in terms of downstream performance to various tasks and improved robustness to color changes, including train-test distribution shifts. Our approach can be seamlessly integrated into existing architectures, such as ResNets, and offers a promising solution for addressing color-based domain shifts in CNNs.Comment: NeurIPS 2023. Code available on https://github.com/Attila94/cecon

    Benchmarking Data Efficiency and Computational Efficiency of Temporal Action Localization Models

    Full text link
    In temporal action localization, given an input video, the goal is to predict which actions it contains, where they begin, and where they end. Training and testing current state-of-the-art deep learning models requires access to large amounts of data and computational power. However, gathering such data is challenging and computational resources might be limited. This work explores and measures how current deep temporal action localization models perform in settings constrained by the amount of data or computational power. We measure data efficiency by training each model on a subset of the training set. We find that TemporalMaxer outperforms other models in data-limited settings. Furthermore, we recommend TriDet when training time is limited. To test the efficiency of the models during inference, we pass videos of different lengths through each model. We find that TemporalMaxer requires the least computational resources, likely due to its simple architecture.Comment: Accepted to the CVEU workshop at ICCV 202
    corecore