286 research outputs found

    Modeling Micro-Porous Surfaces for Secondary Electron Emission Control to Suppress Multipactor

    Get PDF
    This work seeks to understand how the topography of a surface can be engineered to control secondary electron emission (SEE) for multipactor suppression. Two unique, semi-empirical models for the secondary electron yield (SEY) of a micro-porous surface are derived and compared. The first model is based on a two-dimensional (2D) pore geometry. The second model is based on a three-dimensional (3D) pore geometry. The SEY of both models is shown to depend on two categories of surface parameters: chemistry and topography. An important parameter in these models is the probability of electron emissions to escape the surface pores. This probability is shown by both models to depend exclusively on the aspect ratio of the pore (the ratio of the pore height to the pore diameter). The increased accuracy of the 3D model (compared to the 2D model) results in lower electron escape probabilities with the greatest reductions occurring for aspect ratios less than two. In order to validate these models, a variety of micro-porous gold surfaces were designed and fabricated using photolithography and electroplating processes. The use of an additive metal-deposition process (instead of the more commonly used subtractive metal-etch process) provided geometrically ideal pores which were necessary to accurately assess the 2D and 3D models. Comparison of the experimentally measured SEY data with model predictions from both the 2D and 3D models illustrates the improved accuracy of the 3D model. For a micro-porous gold surface consisting of pores with aspect ratios of two and a 50% pore density, the 3D model predicts that the maximum total SEY will be one. This provides optimal engineered surface design objectives to pursue for multipactor suppression using gold surfaces

    Evaluation of Four-Year Coronary Artery Response After Sirolimus-Eluting Stent Implantation Using Serial Quantitative Intravascular Ultrasound and Computer-Assisted Grayscale Value Analysis for Plaque Composition in Event-Free Patients

    Get PDF
    ObjectivesThis study sought to evaluate the long-term arterial response after sirolimus-eluting stent implantation.BackgroundSirolimus-eluting stents are effective in inhibiting neointimal hyperplasia without affecting plaque volume behind the stent struts at six months.MethodsSerial quantitative intravascular ultrasound and computer-assisted grayscale value analysis over four years were performed in 23 event-free patients treated with sirolimus-eluting stents.ResultsIn the first two years, the mean plaque volume (155.5 ± 42.8 mm3post-procedure and 156.8 ± 57.7 mm3at two years, p = 0.86) and plaque compositional change expressed as mean percent hypoechogenic tissue of the plaque behind the stent struts (78.9 ± 8.6% post-procedure and 78.2 ± 8.9% at two years, p = 0.67) did not significantly change. However, significant plaque shrinking (change in plaque volume = −18.4 mm3, p = 0.02) with an increase in plaque echogenicity (change in percent hypoechogenic tissue = −7.8%, p < 0.0001) was observed between two and four years. The mean neointimal volume increased over four years from 0 to 8.4 ± 5.8 mm3(p < 0.0001). However, no further statistically significant change occurred between two and four years (7.0 ± 6.7 mm3vs. 8.4 ± 5.8 mm3, p = 0.25).ConclusionsBetween two and four years after sirolimus-eluting stent implantation, peri-stent tissue shrank with a concomitant increase in echogenicity. These intravascular ultrasound findings suggest that late chronic artery responses may evolve for up to four years after sirolimus-eluting stent implantation. In addition, the fact that the neointima does not significantly change from two to four years may suggest that the biological phenomenon of a delayed healing response has begun to subside

    Optimized Preoperative Planning of Double Outlet Right Ventricle Patients by 3D Printing and Virtual Reality:A Pilot Study

    Get PDF
    OBJECTIVES: In complex double outlet right ventricle (DORV) patients, the optimal surgical approach may be difficult to assess based on conventional two-dimensional (2D) ultrasound (US) and computed tomography (CT) imaging. The aim of this study is to assess the added value of 3D printed and 3D Virtual Reality (VR) models of the heart used for surgical planning in DORV patients, supplementary to the gold standard 2D imaging modalities.METHODS: Five patients with different DORV-subtypes and high-quality CT scans were selected retrospectively. 3D prints and 3D-VR models were created. Twelve congenital cardiac surgeons and paediatric cardiologists, from three different hospitals, were shown 2D-CT first, after which they assessed the 3D print and 3D-VR models in random order. After each imaging method, a questionnaire was filled in on the visibility of essential structures and the surgical plan.RESULTS: Spatial relationships were generally better visualized using 3D methods (3D printing/3D-VR) than in 2D. The feasibility of VSD patch closure could be determined best using 3D-VR reconstructions (3D-VR 92%, 3D print 66%, and US/CT 46%, P &lt; 0.01). The percentage of proposed surgical plans corresponding to the performed surgical approach was 66% for plans based on US/CT, 78% for plans based on 3D printing, and 80% for plans based on 3D-VR visualization.CONCLUSIONS: This study shows that both 3D printing and 3D-VR have additional value for cardiac surgeons and cardiologists over 2D imaging, because of better visualization of spatial relationships. As a result, the proposed surgical plans based on the 3D visualizations matched the actual performed surgery to a greater extent.</p

    Critical appraisal of artificial intelligence-based prediction models for cardiovascular disease

    Get PDF
    The medical field has seen a rapid increase in the development of artificial intelligence (AI)-based prediction models. With the introduction of such AI-based prediction model tools and software in cardiovascular patient care, the cardiovascular researcher and healthcare professional are challenged to understand the opportunities as well as the limitations of the AI-based predictions. In this article, we present 12 critical questions for cardiovascular health professionals to ask when confronted with an AI-based prediction model. We aim to support medical professionals to distinguish the AI-based prediction models that can add value to patient care from the AI that does not

    ECG-Gated Three-dimensional Intravascular Ultrasound

    Get PDF
    Background Automated systems for the quantitative analysis of three-dimensional (3D) sets of intravascular ultrasound (IVUS) images have been developed to reduce the time required to perform volumetric analyses; however, 3D image reconstruction by these nongated systems is frequently hampered by cyclic artifacts. Methods and Results We used an ECG-gated 3D IVUS image acquisition workstation and a dedicated pullback device in atherosclerotic coronary segments of 30 patients to evaluate (1) the feasibility of this approach of image acquisition, (2) the reproducibility of an automated contour detection algorithm in measuring lumen, external elastic membrane, and plaque+media cross-sectional areas (CSAs) and volumes and the cross-sectional and volumetric plaque+media burden, and (3) the agreement between the automated area measurements and the results of manual tracing. The gated image acquisition took 3.9±1.5 minutes. The length of the segments analyzed was 9.6 to 40.0 mm, with 2.3±1.5 side branches per segment. The minimum lumen CSA measured 6.4±1.7 mm2, and the maximum and average CSA plaque+media burden measured 60.5±10.2% and 46.5±9.9%, respectively. The automated contour-detection required 34.3±7.3 minutes per segment. The differences between these measurements and manual tracing did not exceed 1.6% (SD<6.8%). Intraobserver and interobserver differences in area measurements (n=3421; r=.97 to.99) were <1.6% (SD<7.2%); intraobserver and interobserver differences in volumetric measurements (n=30; r=.99) were <0.4% (SD<3.2%). Conclusions ECG-gated acquisition of 3D IVUS image sets is feasible and permits the application of automated contour detection to provide reproducible measurements of the lumen and atherosclerotic plaque CSA and volume in a relatively short analysis time

    IVUS-based imaging modalities for tissue characterization: similarities and differences

    Get PDF
    Gray-scale intravascular ultrasound (IVUS) is the modality that has been established as the golden standard for in vivo imaging of the vessel wall of the coronary arteries. The use of IVUS in clinical practice is an important diagnostic tool used for quantitative assessment of coronary artery disease. This has made IVUS the de-facto invasive imaging method to evaluate new interventional therapies such as new stent designs and for atherosclerosis progression-regression studies. However, the gray-scale representation of the coronary vessel wall and plaque morphology in combination with the limited resolution of the current IVUS catheters makes it difficult, if not impossible, to identify qualitatively (e.g. visually) the plaque morphology similar as that of histopathology, the golden standard to characterize and quantify coronary plaque tissue components. Meanwhile, this limitation has been partially overcome by new innovative IVUS-based post-processing methods such as: virtual histology IVUS (VH-IVUS, Volcano Therapeutics, Rancho Cordova, CA, USA), iMAP-IVUS (Bostoc Scientific, Santa Clara, CA, USA), Integrated Backscatter IVUS (IB-IVUS) and Automated Differential Echogenicity (ADE)
    corecore