5 research outputs found

    High-affinity prorenin binding to cardiac man-6-P/IGF-II receptors precedes proteolytic activation to renin

    Get PDF
    Mannose-6-phosphate (man-6-P)/insulin-like growth factor-II (man-6-P/IgF-II) receptors are involved in the activation of recombinant human prorenin by cardiomyocytes. To investigate the kinetics of this process, the nature of activation, the existence of other prorenin receptors, and binding of native prorenin, neonatal rat cardiomyocytes were incubated with recombinant, renal, or amniotic fluid prorenin with or without man-6-P. Intact and activated prorenin were measured in cell lysates with prosegment- and renin-specific antibodies, respectively. The dissociation constant (K(d)) and maximum number of binding sites (B(max)) for prorenin binding to man-6-P/IGF-II receptors were 0.6 +/- 0.1 nM and 3,840 +/- 510 receptors/myocyte, respectively. The capacity for prorenin internalization was greater than 10 times B(max). Levels of internalized intact prorenin decreased rapidly (half-life = 5 +/- 3 min) indicating proteolytic prosegment removal. Prorenin subdivision into man-6-P-free and man-6-P-containing fractions revealed that only the latter was bound. Cells also bound and activated renal but not amniotic fluid prorenin. We concluded that cardiomyocytes display high-affinity binding of renal but not extrarenal prorenin exclusively via man-6-P/IGF-II receptors. Binding precedes internalization and proteolytic activation to renin thereby supporting the concept of cardiac angiotensin formation by renal prorenin

    Prorenin accumulation and activation in human endothelial cells: importance of mannose 6-phosphate receptors

    Get PDF
    ACE inhibitors improve endothelial dysfunction, possibly by blocking endothelial angiotensin production. Prorenin, through its binding and activation by endothelial mannose 6-phosphate (M6P) receptors, may contribute to this production. Here, we investigated this possibility as well as prorenin activation kinetics, the nature of the prorenin-activating enzyme, and M6P receptor-independent prorenin binding. Human umbilical vein endothelial cells (HUVECs) were incubated with wild-type prorenin, K/A-2 prorenin (in which Lys42 is mutated to Ala, thereby preventing cleavage by known proteases), M6P-free prorenin, and nonglycosylated prorenin, with or without M6P, protease inhibitors, or angiotensinogen. HUVECs bound only M6P-containing prorenin (K(d) 0.9+/-0.1 nmol/L, maximum number of binding sites [B(max)] 1010+/-50 receptors/cell). At 37 degrees C, because of M6P receptor recycling, the amount of prorenin internalized via M6P receptors was >25 times B(max). Inside the cells, wild-type and K/A-2 prorenin were proteolytically activated to renin. Renin was subsequently degraded. Protease inhibitors interfered with the latter but not with prorenin activation, thereby indicating that the activating enzyme is different from any of the known prorenin-activating enzymes. Incubation with angiotensinogen did not lead to endothelial angiotensin generation, inasmuch as HUVECs were unable to internalize angiotensinogen. Most likely, therefore, in the absence of angiotensinogen synthesis or endocytosis, M6P receptor-mediated prorenin internalization by endothelial cells represents prorenin clearance

    Plasma renin and prorenin and renin gene variation in patients with insulin-dependent diabetes mellitus and nephropathy

    Get PDF
    BACKGROUND: The most striking abnormality in the renin angiotensin system in diabetic nephropathy (DN) is increased plasma prorenin. Renin is thought to be low or normal in DN. In spite of altered (pro)renin regulation the renin gene has not been studied for contribution to the development of DN. METHODS: We studied plasma renin, prorenin, and four polymorphic markers of the renin gene in 199 patients with IDDM and DN, and in 192 normoalbuminuric IDDM controls matched for age, sex, and duration of diabetes. Plasma renin and total renin were measured by immunoradiometric assays. Genotyping was PCR-based. RESULTS: Plasma renin was increased in patients with nephropathy (median (range), 26.3 (5.2-243.3) vs 18.3 (4.2-373.5) microU/ml in the normoalbuminuric group, P<0.0001). Prorenin levels were elevated out of proportion to renin levels in nephropathic patients (789 (88-5481) vs 302 (36-2226) microU/ml, P<0.0001). Proliferative retinopathy had an additive effect on plasma prorenin, but not on renin. DN was associated with a BglI RFLP in the first intron of the renin gene (bb-genotype: n=106 vs 82 in DN and normoalbuminuric patients respectively, P=0.037), but not with three other polymorphisms in the renin gene. A trend for association of higher prorenin levels with the DN-associated allele of this renin polymorphism was observed in a subgroup of patients with DN (bb vs Bb+BB, P=0.07). CONCLUSIONS: The results indicate that in DN there is an increase in both renin and prorenin levels. A renin gene polymorphism may contribute weakly to DN. Although speculative, one of the renin gene alleles could lead to increased renin gene expression, leading to higher renin and prorenin levels. These may play a role in the pathogenesis of DN

    Aliskiren-binding increases the half life of renin and prorenin in rat aortic vascular smooth muscle cells

    No full text
    Renin inhibition with aliskiren has been reported to cause a greater rise in renin than other types of renin-angiotensin system blockade, thereby potentially leading to angiotensin generation or stimulation of the human (pro)renin receptor (h(P)RR). Here we studied whether this rise in renin is attributable to an aliskiren-induced change in the prorenin conformation, allowing its detection in renin assays, or a change in renin/prorenin clearance. We also investigated whether aliskiren affects (pro)renin binding to its receptors, using rat aortic vascular smooth muscle cells (VSMCs) overexpressing the h(P)RR. Methods and Results-A 48-hour incubation with aliskiren at 40C converted the prorenin conformation from "closed" to "open," thus allowing its recognition in active site-directed renin assays. VSMCs accumulated (pro)renin through binding to mannose 6-phosphate receptors (M6PRs) and h(P)RRs. Aliskiren did not affect binding at 40C. At 370C, aliskiren increased (pro)renin accumulation up to 40-fold, and M6PR blockade prevented this. Aliskiren increased the intracellular half life of prorenin 2 to 3 times. Conclusion-Aliskiren allows the detection of prorenin as renin, and decreases renin/prorenin clearance. Both phenomena may contribute to the "renin" surge during aliskiren treatment, but because they depend on aliskiren binding, they will not result in angiotensin generation. Aliskiren does not affect (pro)renin binding to its receptors

    Aliskiren accumulates in renin secretory granules and binds plasma prorenin

    No full text
    The vascular effects of aliskiren last longer than expected based on its half life, and this renin inhibitor has been reported to cause a greater renin rise than other renin-angiotensin system blockers. To investigate whether aliskiren accumulation in secretory granules contributes to these phenomena, renin-synthesizing mast cells were incubated with aliskiren, washed, and exposed to forskolin in medium without aliskiren (0.1 to 1000 nmol/L). (Pro)renin concentrations were measured by renin- and prorenin-specific immunoradiometric assays, and renin activity was measured by enzyme-kinetic assay. Without aliskiren, the culture medium predominantly contained prorenin, the cells exclusively stored renin, and forskolin doubled renin release. Aliskiren dose-dependently bound to (pro)renin in the medium and cell lysates and did not alter the effect of forskolin. The aliskiren concentrations required to bind prorenin were 1 to 2 orders of magnitude higher than those needed to bind renin. Blockade of cell lysate renin activity ranged from 27±15% to 79±5%, and these percentages were identical for the renin that was released by forskolin, indicating that they represented the same renin pool, ie, the renin storage granules. Comparison of renin and prorenin measurements in blood samples obtained from human volunteers treated with aliskiren, both before and after prorenin activation, revealed that ≤30% of prorenin was detected in renin-specific assays. In conclusion, aliskiren accumulates in renin granules, thus allowing long-lasting renin-angiotensin system blockade beyond the half-life of this drug. Aliskiren also binds to prorenin. This allows its detection as renin, and might explain, in part, the renin rise during renin inhibition
    corecore