3 research outputs found

    An Instrumented Apartment to Monitor Human Behavior: A Pilot Case Study in the NeuroTec Loft

    Get PDF
    For patients suffering from neurodegenerative disorders, the behavior and activities of daily living are an indicator of a change in health status, and home-monitoring over a prolonged period of time by unobtrusive sensors is a promising technology to foster independent living and maintain quality of life. The aim of this pilot case study was the development of a multi-sensor system in an apartment to unobtrusively monitor patients at home during the day and night. The developed system is based on unobtrusive sensors using basic technologies and gold-standard medical devices measuring physiological (e.g., mobile electrocardiogram), movement (e.g., motion tracking system), and environmental parameters (e.g., temperature). The system was evaluated during one session by a healthy 32-year-old male, and results showed that the sensor system measured accurately during the participant’s stay. Furthermore, the participant did not report any negative experiences. Overall, the multi-sensor system has great potential to bridge the gap between laboratories and older adults’ homes and thus for a deep and novel understanding of human behavioral and neurological disorders. Finally, this new understanding could be utilized to develop new algorithms and sensor systems to address problems and increase the quality of life of our aging society and patients with neurological disorders

    Development of an Open-source and Lightweight Sensor Recording Software System for Conducting Biomedical Research: Technical Report.

    Get PDF
    BACKGROUND Digital sensing devices have become an increasingly important component of modern biomedical research, as they help provide objective insights into individuals' everyday behavior in terms of changes in motor and nonmotor symptoms. However, there are significant barriers to the adoption of sensor-enhanced biomedical solutions in terms of both technical expertise and associated costs. The currently available solutions neither allow easy integration of custom sensing devices nor offer a practicable methodology in cases of limited resources. This has become particularly relevant, given the need for real-time sensor data that could help lower health care costs by reducing the frequency of clinical assessments performed by specialists and improve access to health assessments (eg, for people living in remote areas or older adults living at home). OBJECTIVE The objective of this paper is to detail the end-to-end development of a novel sensor recording software system that supports the integration of heterogeneous sensor technologies, runs as an on-demand service on consumer-grade hardware to build sensor systems, and can be easily used to reliably record longitudinal sensor measurements in research settings. METHODS The proposed software system is based on a server-client architecture, consisting of multiple self-contained microservices that communicated with each other (eg, the web server transfers data to a database instance) and were implemented as Docker containers. The design of the software is based on state-of-the-art open-source technologies (eg, Node.js or MongoDB), which fulfill nonfunctional requirements and reduce associated costs. A series of programs to facilitate the use of the software were documented. To demonstrate performance, the software was tested in 3 studies (2 gait studies and 1 behavioral study assessing activities of daily living) that ran between 2 and 225 days, with a total of 114 participants. We used descriptive statistics to evaluate longitudinal measurements for reliability, error rates, throughput rates, latency, and usability (with the System Usability Scale [SUS] and the Post-Study System Usability Questionnaire [PSSUQ]). RESULTS Three qualitative features (event annotation program, sample delay analysis program, and monitoring dashboard) were elaborated and realized as integrated programs. Our quantitative findings demonstrate that the system operates reliably on consumer-grade hardware, even across multiple months (>420 days), providing high throughput (2000 requests per second) with a low latency and error rate (<0.002%). In addition, the results of the usability tests indicate that the system is effective, efficient, and satisfactory to use (mean usability ratings for the SUS and PSSUQ were 89.5 and 1.62, respectively). CONCLUSIONS Overall, this sensor recording software could be leveraged to test sensor devices, as well as to develop and validate algorithms that are able to extract digital measures (eg, gait parameters or actigraphy). The proposed software could help significantly reduce barriers related to sensor-enhanced biomedical research and allow researchers to focus on the research questions at hand rather than on developing recording technologies

    A Transferable Lidar-Based Method to Conduct Contactless Assessments of Gait Parameters in Diverse Home-like Environments

    No full text
    Gait abnormalities in older adults are linked to increased risks of falls, institutionalization, and mortality, necessitating accurate and frequent gait assessments beyond traditional clinical settings. Current methods, such as pressure-sensitive walkways, often lack the continuous natural environment monitoring needed to understand an individual’s gait fully during their daily activities. To address this gap, we present a Lidar-based method capable of unobtrusively and continuously tracking human leg movements in diverse home-like environments, aiming to match the accuracy of a clinical reference measurement system. We developed a calibration-free step extraction algorithm based on mathematical morphology to realize Lidar-based gait analysis. Clinical gait parameters of 45 healthy individuals were measured using Lidar and reference systems (a pressure-sensitive walkway and a video recording system). Each participant participated in three predefined ambulation experiments by walking over the walkway. We observed linear relationships with strong positive correlations (R2>0.9) between the values of the gait parameters (step and stride length, step and stride time, cadence, and velocity) measured with the Lidar sensors and the pressure-sensitive walkway reference system. Moreover, the lower and upper 95% confidence intervals of all gait parameters were tight. The proposed algorithm can accurately derive gait parameters from Lidar data captured in home-like environments, with a performance not significantly less accurate than clinical reference systems
    corecore